Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T19:40:29.513Z Has data issue: false hasContentIssue false

Detecting the First Supernovae in the Universe with JWST

Published online by Cambridge University Press:  05 September 2012

Daniel J. Whalen*
Affiliation:
McWilliams Fellow, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 email: dwhalen@lanl.gov Theoretical Division (T-2), Los Alamos National Laboratory, Los Alamos, NM 87545
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive Population III stars die as pair-instability supernovae (PI SNe), the most energetic thermonuclear explosions in the universe with energies up to 100 times those of Type Ia or Type II SNe. Their extreme luminosities may allow them to be observed from the earliest epochs, revealing the nature of Pop III stars and the primitive galaxies in which they reside. We present numerical simulations of Pop III PI SNe done with the radiation hydrodynamics code RAGE and calculations of their light curves and spectra performed with the SPECTRUM code. We find that 150 - 250 M PI SNe will be visible to the James Webb Space Telescope (JWST) out to z ~ 30 and to z ~ 15 - 20 in all-sky NIR surveys by the Wide Field Infrared Survey Telescope (WFIRST).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Science, 295, 93CrossRefGoogle Scholar
Abel, T., Wise, J. H., & Bryan, G. L. 2007, ApJL, 659, L87CrossRefGoogle Scholar
Alvarez, M. A., Bromm, V., & Shapiro, P. R. 2006Google Scholar
Bromm, V., Ferrara, A., Coppi, P. S., & Larson, R. B. 2001, MNRAS, 328, 969CrossRefGoogle Scholar
Clark, P. C., Glover, S. C. O., Smith, R. J., Greif, T. H., Klessen, R. S., & Bromm, V. 2011, Science, 331, 1040CrossRefGoogle Scholar
Frey, L. H., Even, W., Whalen, D. J., Fryer, C. L., Hungerford, A. L., Fontes, C. J., & Colgan, J. 2012, ArXiv e-printsGoogle Scholar
Fryer, C. L., Whalen, D. J., & Frey, L. 2010, in American Institute of Physics Conference Series, Vol. 1294, American Institute of Physics Conference Series, ed. Whalen, D. J., Bromm, V., & Yoshida, N., 7075Google Scholar
Gittings, M. et al. 2008, Computational Science and Discovery, 1, 015005CrossRefGoogle Scholar
Greif, T. H., Springel, V., White, S. D. M., Glover, S. C. O., Clark, P. C., Smith, R. J., Klessen, R. S., & Bromm, V. 2011, ApJ, 737, 75CrossRefGoogle Scholar
Heger, A. & Woosley, S. E. 2002, ApJ, 567, 532CrossRefGoogle Scholar
Hummel, J., Pawlik, A., Milosavljevic, M., & Bromm, V. 2011, ArXiv e-printsGoogle Scholar
Joggerst, C. C. & Whalen, D. J. 2011, ApJ, 728, 129CrossRefGoogle Scholar
Kasen, D., Woosley, S. E., & Heger, A. 2011, ApJ, 734, 102CrossRefGoogle Scholar
Kitayama, T., Yoshida, N., Susa, H., & Umemura, M. 2004, ApJ, 613, 631CrossRefGoogle Scholar
Madau, P. 1995, ApJ, 441, 18CrossRefGoogle Scholar
Magee, N. H., Abdallah, et al. 1995, in Astronomical Society of the Pacific Conference Series, Vol. 78, Astrophysical Applications of Powerful New Databases, ed. Adelman, S. J. & Wiese, W. L., 51Google Scholar
Nakamura, F. & Umemura, M. 2001, ApJ, 548, 19CrossRefGoogle Scholar
O'Shea, B. W. & Norman, M. L. 2007, ApJ, 654, 66CrossRefGoogle Scholar
Pan, T., Kasen, D., & Loeb, A. 2011, ArXiv e-printsGoogle Scholar
Scannapieco, E., Madau, P., Woosley, S., Heger, A., & Ferrara, A. 2005, ApJ, 633, 1031CrossRefGoogle Scholar
Schaerer, D. 2002, A&A, 382, 28Google Scholar
Stacy, A., Greif, T. H., & Bromm, V. 2010, MNRAS, 403, 45CrossRefGoogle Scholar
Su, J. et al. 2011, ApJ, 738, 123CrossRefGoogle Scholar
Turk, M. J., Abel, T., & O'Shea, B. 2009, Science, 325, 601CrossRefGoogle Scholar
Whalen, D., Abel, T., & Norman, M. L. 2004, ApJ, 610, 14CrossRefGoogle Scholar
Whalen, D., van Veelen, B., O'Shea, B. W., & Norman, M. L. 2008, ApJ, 682, 49CrossRefGoogle Scholar