Skip to main content Accessibility help
×
Home

Collaborative visual analytics of radio surveys in the Big Data era

  • Dany Vohl (a1), Christopher J. Fluke (a1) (a2), Amr H. Hassan (a1), David G. Barnes (a2) (a3) and Virginia A. Kilborn (a1)...

Abstract

Radio survey datasets comprise an increasing number of individual observations stored as sets of multidimensional data. In large survey projects, astronomers commonly face limitations regarding: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. To support collaborative data inquiry, we present encube, a large-scale comparative visual analytics framework. encube can utilise advanced visualization environments such as the CAVE2 (a hybrid 2D and 3D virtual reality environment powered with a 100 Tflop/s GPU-based supercomputer and 84 million pixels) for collaborative analysis of large subsets of data from radio surveys. It can also run on standard desktops, providing a capable visual analytics experience across the display ecology. encube is composed of four primary units enabling compute-intensive processing, advanced visualisation, dynamic interaction, parallel data query, along with data management. Its modularity will make it simple to incorporate astronomical analysis packages and Virtual Observatory capabilities developed within our community. We discuss how encube builds a bridge between high-end display systems (such as CAVE2) and the classical desktop, preserving all traces of the work completed on either platform – allowing the research process to continue wherever you are.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Collaborative visual analytics of radio surveys in the Big Data era
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Collaborative visual analytics of radio surveys in the Big Data era
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Collaborative visual analytics of radio surveys in the Big Data era
      Available formats
      ×

Copyright

References

Hide All
Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A. M., Kerzendorf, W. E., Conley, A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier, F., Parikh, M. M., Nair, P. H., Unther, H. M., Deil, C., Woillez, J., Conseil, S., Kramer, R., Turner, J. E. H., Singer, L., Fox, R., Weaver, B. A., Zabalza, V., Edwards, Z. I., Azalee Bostroem, K., Burke, D. J., Casey, A. R., Crawford, S. M., Dencheva, N., Ely, J., Jenness, T., Labrie, K., Lim, P. L., Pierfederici, F., Pontzen, A., Ptak, A., Refsdal, B., Servillat, M., & Streicher, O. 2013, A&A Astronomy & Astrophysics, 558, A33
Dowler, P., Rixon, G., & Tody, D. 2010, ArXiv e-prints, arXiv 1110.0497
Febretti, A., Nishimoto, A., Mateevitsi, V., Renambot, L., Johnson, A., & Leigh, J., 2014. Virtual Reality (VR), Proc. IEEE Conference, pp. 9–14.
Hassan, A. H., Fluke, C. J., Barnes, D. G., & Kilborn, V. A., 2013. MNRAS Monthly Notices of the Royal Astronomical Society, 463, 3
Johnston, S., Taylor, R., Bailes, M., Bartel, N., Baugh, C., Bietenholz, M., Blake, C., Braun, R., Brown, J., Chatterjee, S., Darling, J., Deller, A., Dodson, R., Edwards, P., Ekers, R., Ellingsen, S., Feain, I., Gaensler, B., Haverkorn, M., Hobbs, G., Hopkins, A., Jackson, C., James, C., Joncas, G., Kaspi, V., Kilborn, V., Koribalski, B., Kothes, R., Landecker, T., Lenc, E., Lovell, J., Macquart, J.-P., Manchester, R., Matthews, D., McClure-Griffiths, N., Norris, R., Pen, U.-L., Phillips, C., Power, C., Protheroe, R., Sadler, E., Schmidt, B., Stairs, I., Staveley-Smith, L., Stil, J., Tingay, S., Tzioumis, A., Walker, M., Wall, J., & Wolleben, M. 2008, Experimental Astronomy, 22, pp. 151273
Verheijen, M., Oosterloo, T., Heald, G., & van Cappellen, W. 2009, HI Surveys with APERTIF. Panoramic Radio Astronomy: Wide-field 1-2 GHz research on galaxy evolution, pp. 1–2.
Quinn, P., Axelrod, T., Bird, I., Dodson, R., Szalay, A., & Wicenec, A. 2015, ArXiv e-prints, arXiv 1501.05367
Taylor, M. B., Boch, T., & Taylor, J. 2015, A&C Astronomy and Computing, 11, pp. 8190
Thomas, J. J. & Cook, K. A. 2006, IEEE Computer Graphics and Applications, 26, 1
Vohl, D., Fluke, C. J., Hassan, A. H., & Barnes, D. G. 2015, in: Lorente, N. P. F. & Shortridge, K. (eds.) An interactive, comparative and quantitative 3D visualization system for large-scale spectral-cube surveys using CAVE2, Proc. ADASS XXV (San Francisco: ASP)
Vohl, D., Barnes, D. G., Fluke, C. J., Poudel, G., Georgiou-Karistianis, N., Hassan, A. H., Benovitski, Y., Wong, T. H., Kaluza, O., Nguyen, T. D., & Bonnington, C. P. 2016, Peer J Computer Science, doi: 10.7717/peerj-cs.88
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed