Skip to main content Accessibility help
×
Home

The chemistry in clumpy AGB outflows

  • M. Van de Sande (a1), J. O. Sundqvist (a1), T. J. Millar (a2), D. Keller (a1) and L. Decin (a1) (a3)...

Abstract

The chemistry within the outflow of an AGB star is determined by its elemental C/O abundance ratio. Thanks to the advent of high angular resolution observations, it is clear that most outflows do not have a smooth density distribution, but are inhomogeneous or “clumpy”. We have developed a chemical model that takes into account the effect of a clumpy outflow on its gas-phase chemistry by using a theoretical porosity formalism. The clumpiness of the model increases the inner wind abundances of all so-called unexpected species, i.e. species that are not predicted to be present assuming an initial thermodynamic equilibrium chemistry. By applying the model to the distribution of cyanopolyynes and hydrocarbon radicals within the outflow of IRC+10216, we find that the chemistry traces the underlying density distribution.

Copyright

References

Hide All
Agúndez, M., Cernicharo, J., Quintana-Lacaci, G. et al. 2017, A&A, 601, A4
Cordiner, M.A. & Millar, T.J. 2009, ApJ, 697, 68
Keller, D., de Koter, A., Decin, L. et al. 2018, A&A, under review
Owocki, S. P. & Cohen, D. H. 2006, ApJ, 648, 565
Sundqvist, J. O., Puls, J. & Owocki, S. P. 2014, A&A, 568, A59
Van de Sande, M., Sundqvist, J. O., Millar, T. J. et al. 2018, A&A, 616, A106
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

The chemistry in clumpy AGB outflows

  • M. Van de Sande (a1), J. O. Sundqvist (a1), T. J. Millar (a2), D. Keller (a1) and L. Decin (a1) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed