Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T12:12:40.762Z Has data issue: false hasContentIssue false

Chemical evolution in planet-forming regions. Impact on volatile abundances and C/O ratios of planet-building material

Published online by Cambridge University Press:  04 September 2018

Christian Eistrup
Affiliation:
Leiden Observatory, Niels Bohrweg 2, 2333RA Leiden, Netherlands email: eistrup@strw.leidenuniv.nl
Catherine Walsh
Affiliation:
Leiden Observatory, Niels Bohrweg 2, 2333RA Leiden, Netherlands email: eistrup@strw.leidenuniv.nl School of Physics and Astronomy, E C Stoner Building, University of Leeds, Leeds, UK
Ewine F. van Dishoeck
Affiliation:
Leiden Observatory, Niels Bohrweg 2, 2333RA Leiden, Netherlands email: eistrup@strw.leidenuniv.nl Max-Planck-Institut für extraterrestrische Physik, P.O. Box 1312, D-85741, Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Connecting the observed composition of exoplanets to their formation sites often involves comparing the atmospheric C/O ratio to a disk midplane model with a fixed chemical composition. In this scenario chemistry during the planet formation era is not considered. However, kinetic chemical evolution during the lifetime of the gaseous disk can change the relative abundances of volatile species, thus altering the C/O ratios of planetary building blocks. In our chemical evolition models we utilize a large network of gas-phase, grain-surface and gas-grain interaction reactions, thus providing a comprehensive treatment of chemistry. The results show that, if sufficient ionisation is present, then chemistry does alter the C/O ratios of gas and ice during the epoch of planet(esimal) formation. This modifies the picture of C/O ratios in disk midplanes defined simply by volatile ice lines in a midplane of fixed chemical composition. Chemical evolution thus needs to be addressed when predicting the makeup of planets and their atmospheres.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Alibert, Y., Carron, F., Fortier, A., et al., 2013, A&A, 558, A109Google Scholar
Ali-Dib, M., Mousis, O., Petit, J.-M., et al., 2014, ApJ, 785, 125Google Scholar
Birkby, J. L., de Kok, R. J., Brogi, M., et al., 2013, MNRAS, 436, L35Google Scholar
Bitsch, B. & Johansen, A., 2016, A&A, 590, A101Google Scholar
Crossfield, I. J. M., 2015, PASP, 127, 941Google Scholar
Eistrup, C., Walsh, C., & van Dishoeck, E. F., 2016, A&A, 595, A83Google Scholar
Fraine, J., Deming, D., Benneke, B., et al., 2014, Nature, 513, 526Google Scholar
Walsh, C., Nomura, H., & van Dishoeck, E., 2015, A&A, 582, A88Google Scholar
Williams, J. P. & Cieza, L. A., 2011, ARA&A, 49, 67Google Scholar
Öberg, K. I., Murray-Clay, R., & Bergin, E. A., 2011, ApJL, 743, L16Google Scholar
Lambrechts, M. & Johansen, A., 2012, A&A, 544, A32Google Scholar
Madhusudhan, N., Amin, M. A., Kennedy, G. M., 2014, ApJL, 794, L12Google Scholar
McElroy, D., Walsh, C., Markwick, A. J., et al., 2013, A&A, 550, A36Google Scholar
Seager, S. & Deming, D., 2010, AR&A, 48, 631Google Scholar
Sing, D. K., Fortney, J. J., Nikolov, N., et al., 2016, Nature, 529, 59Google Scholar
Snellen, I. A. G., de Kok, R. J., de Mooij, , et al., 2010, Nature, 465, 1049Google Scholar