Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T17:06:35.763Z Has data issue: false hasContentIssue false

Binary Paths to Type Ia Supernovae Explosions: the Highlights

Published online by Cambridge University Press:  17 January 2013

Lilia Ferrario*
Affiliation:
Department of Mathematics, Mathematical Sciences Institute, The Australian National University, ACT 0200Australia email: Lilia.Ferrario@anu.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This symposium was focused on the hunt for the progenitors of Type Ia supernovae (SNe Ia). Is there a main channel for the production of SNe Ia? If so, are these elusive progenitors single degenerate or double degenerate systems? Although most participants seemed to favor the single degenerate channel, there was no general agreement on the type of binary system at play. An observational puzzle that was highlighted was the apparent paucity of supersoft sources in our Galaxy and also in external galaxies. The single degenerate channel (and as it was pointed out, quite possibly also the double degenerate channel) requires the binary system to pass through a phase of steady nuclear burning. However, the observed number of supersoft sources falls short by a factor of up to 100 in explaining the estimated birth rates of SNe Ia. Thus, are these supersoft sources somehow hidden away and radiating at different wavelengths, or are we missing some important pieces of this puzzle that may lead to the elimination of a certain class of progenitor? Another unanswered question concerns the dependence of SNe Ia luminosities on the age of their host galaxy. Several hypotheses were put forward, but none was singled out as the most likely explanation.

It is fair to say that at the end of the symposium the definitive answer to the vexed progenitor question remained well and truly wide open.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Belczynski, K. & Mikolajewska, J. 1998, MNRAS, 296, 77Google Scholar
Bildsten, L., Shen, K. J., Weinberg, N. N., & Nelemans, G. 2007, ApJ, 662, L95Google Scholar
Bragaglia, A., Greggio, L., Renzini, A., & D'Odorico, S. 1990, ApJ, 365, L13Google Scholar
Brown, W. R., Kilic, M., Allende Prieto, C., & Kenyon, S. J. 2011, MNRAS, 411, L31CrossRefGoogle Scholar
de Martino, D. & Gnsicke, B. T. 2009, Ap&SS, 320, 135Google Scholar
Di Stefano, R., Voss, R., & Claeys, J. S. W. 2011, ApJ, 738, L1CrossRefGoogle Scholar
Greggio, L. 2010, MNRAS, 406, 22Google Scholar
Guillochon, J., Dan, M., Ramirez-Ruiz, E., & Rosswog, S. 2010, ApJ, 709, L64Google Scholar
González Hernández, J. I., Ruiz-Lapuente, P., Filippenko, A. V., Foley, R. J., Gal-Yam, A., & Simon, J. D. 2009, ApJ, 691, 1Google Scholar
Howell, D., et al. 2006, Nature, 443, 308Google Scholar
Howell, D. A., Sullivan, M., Conley, A., & Carlberg, R. 2007, ApJ, 667, L37Google Scholar
Hurley, J. R., Tout, C. A., Wickramasinghe, D. T., Ferrario, L., & Kiel, P. D. 2010, MNRAS, 402, 1437Google Scholar
Iben, I., Nomoto, K., Tornambe, A., & Tutukov, A. V. 1987, ApJ, 317, 717Google Scholar
Iben, I. & Tutukov, A. V. 1987, ApJS, 54, 335Google Scholar
Justham, S., Wolf, C., Podsiadlowski, Ph., & Han, Zh. 2009, A&A, 493, 1081Google Scholar
Kilic, M., Brown, W. R., Allende Prieto, C., Agüeros, M. A., Heinke, C., & Kenyon, S. J. 2011, ApJ, 727, 3Google Scholar
Mannucci, F., Della Valle, M., Panagia, N., Cappellaro, E., Cresci, G., Maiolino, R., Petrosian, A., & Turatto, M. 2005, A&A, 433, 807Google Scholar
Mannucci, F., Della Valle, M., & Panagia, N. 2006, MNRAS, 370, 773Google Scholar
Marietta, E., Burrows, A., & Fryxell, B. 2000, ApJS, 128, 615Google Scholar
Marsh, T. R., Dhillon, V. S., & Duck, S. R. 1995, MNRAS, 275, 828Google Scholar
Napiwotzki, R., Christlieb, N., Drechsel, H., et al. 2003, ESO Msngr, 112, 25Google Scholar
Nelemans, G., Yungelson, L. R., Portegies Zwart, S. F., & Verbunt, F. 2001, A&A, 365, 491Google Scholar
Nelson, T., Mukai, K., Orio, M., Luna, G. J. M., & Sokoloski, J. L. 2011, ApJ, in pressGoogle Scholar
Nomoto, K. & Iben, I. 1985, ApJ, 297, 531CrossRefGoogle Scholar
Podsiadlowski, Ph. 2003, astro-ph/0303660v1Google Scholar
Ruiter, A. J., Belczynski, K., & Fryer, C. 2009, ApJ, 699, 2026Google Scholar
Ruiz-Lapuente, P., et al. 2004, Nature, 431, 1069CrossRefGoogle Scholar
Scannapieco, E. & Bildsten, L. 2005, ApJ, 629, L85CrossRefGoogle Scholar
Sullivan, M., et al. 2006, ApJ, 648, 868Google Scholar
Totani, T., Morokuma, T., Oda, T., Doi, M., & Yasuda, N. 2008, PASJ, 60, 132Google Scholar
Tout, C. A., Wickramasinghe, D. T., Lau, Herbert H.-B., Pringle, J. E., & Ferrario, L. 2011, MNRAS, 410, 2458Google Scholar
Townsley, D. M., Jackson, A. P., Calder, A. C., Chamulak, D. A., Brown, E. F., & Timmes, F. X. 2009, ApJ, 701, 1582CrossRefGoogle Scholar
Trümper, J., Hasinger, G., Aschenbach, B., Bräuninger, H., Briel, U. G., Burkert, W., Fink, H., Pfeffermann, E., Pietsch, W., Predehl, P., Schmitt, J. H. M. M., Voges, W., Zimmermann, U., & Beuermann, K. 1991, Nature, 349, 579Google Scholar
Webbink, R. F. 1984, ApJ, 277, 355Google Scholar
Whelan, J. & Iben, I. 1973, ApJ, 186, 1007Google Scholar
Woosley, S. E. & Weaver, T. A. 1994, ApJ, 423, 371Google Scholar
Yoon, S.-C., Podsiadlowski, P., & Rosswog, S. 2007, MNRAS, 380, 933CrossRefGoogle Scholar
Zorotovic, M., Schreiber, M. R., & Gänsicke, B. T. 2011, A&A, 536, 42Google Scholar