Skip to main content Accessibility help
×
Home

Bayesian Cosmic Web Reconstruction: BARCODE for Clusters

  • E. G. Patrick Bos (a1), Rien van de Weygaert (a1), Francisco Kitaura (a2) and Marius Cautun (a3)

Abstract

We describe the Bayesian \barcode\ formalism that has been designed towards the reconstruction of the Cosmic Web in a given volume on the basis of the sampled galaxy cluster distribution. Based on the realization that the massive compact clusters are responsible for the major share of the large scale tidal force field shaping the anisotropic and in particular filamentary features in the Cosmic Web. Given the nonlinearity of the constraints imposed by the cluster configurations, we resort to a state-of-the-art constrained reconstruction technique to find a proper statistically sampled realization of the original initial density and velocity field in the same cosmic region. Ultimately, the subsequent gravitational evolution of these initial conditions towards the implied Cosmic Web configuration can be followed on the basis of a proper analytical model or an N-body computer simulation. The BARCODE formalism includes an implicit treatment for redshift space distortions. This enables a direct reconstruction on the basis of observational data, without the need for a correction of redshift space artifacts. In this contribution we provide a general overview of the the Cosmic Web connection with clusters and a description of the Bayesian BARCODE formalism. We conclude with a presentation of its successful workings with respect to test runs based on a simulated large scale matter distribution, in physical space as well as in redshift space.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bayesian Cosmic Web Reconstruction: BARCODE for Clusters
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bayesian Cosmic Web Reconstruction: BARCODE for Clusters
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bayesian Cosmic Web Reconstruction: BARCODE for Clusters
      Available formats
      ×

Copyright

References

Hide All
Adler, R. J. 1981, The Geometry of Random Fields (Wiley)
Adler, R. J. & Taylor, J. E. 2007, Random Fields and Geometry (Springer)
Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S. (BBKS) 1986, ApJ, 304, 15
Bertschinger, E. 1987, ApJL, 323, 103
Bond, J. R. 1995, Phys Rev. Lett., 74, 4369
Bond, J. R., Kofman, L. & Pogosyan, D. 1996, Nature, 6575, 603
Bond, J.R., Kofman, L., Pogosyan, D. & Wadsley, J. 1998, in Colombi, S., Mellier, Y. eds., Wide Field Surveys in Cosmology, 14th IAP meeting) (Editions Frontieres, p. 17
Bos, E.G.P. 2016, PhD thesis, Univ. Groningen
Cautun, M., van de Weygaert, R., Jones, B. J. T., & Frenk, C. S. 2014, MNRAS, 441, 2923
Colberg, J. M., Krughoff, K. S. & Connolly, A. J. 2005, MNRAS, 359, 272
Colless, M., et al. 2003, arXiv:0306581
Dietrich, J. P., Werner, N., Clowe, D., Finoguenov, A., Kitching, T., Miller, L. & Simionescu, A. 2012, Nature, 487, 202
Guzzo, L. & Teh VIPERS team 2013, The Messsenger, 151, 41
Guzzo, L., et al. 2014, AA, 566, 108
Hess, S., Kitaura, F.-S. & Gottlöber, S. 2013, MNRAS, 435, 2065
Hoffman, Y. & Ribak, E. 1991, ApJL, 380, 5
Huchra, J. P., et al. 2012, ApJS, 199, 26
Jasche, J. & Kitaura, F.-S. 2010 MNRAS, 407, 29
Jasche, J. & Wandelt, B.-D. 2013 MNRAS, 432, 894
Jaynes, E. T. 2003, Probability Theory: The Logic of Science (Cambridge Univ. Press)
Kitaura, F.-S. & Ensslin, T. A. 2008, MNRAS, 389, 497
Kitaura, F.-S. 2012, MNRAS, 429L, 84
Leclercq, F., Jasche, J., Sutter, P. M., Hamaus, N. & Wandelt, B. 2015, JCAP, 03, 047
Leclercq, F. 2015, Bayesian large-scale structure inference and cosmic web analysis, PhD thesis, Univ. Pierre et Marie Curie, Institut d'Astrophysique de Paris
Ludlow, A. D. & Porciani, C. 2011, MNRAS, 413, 1961
Merloni, A. et al. & the German eROSITA Consortium 2012, ArXiv e-prints, 1209.3114
Neal, R. M. 1993, Probabilistic Inference Using Markov Chain Monte Carlo Methods, Technical Report CRG-TR-93-1, Dept. Comp. Science, Univ. Toronto
Neal, R. M. 2011 MCMC using Hamiltonian dynamics, in Brooks, S., Gelman, A., Jones, G. & Meng, X-L Handbook of Markov Chain Monte Carlo. (Chapman & Hall/CRC Press)
Peebles, P.J.E. 1980, The large-scale structure of the universe (Princeton Univ. Press)
Pogosyan, D., Bond, J. R., Kofman, L. & Wadsley, J. 1998, in Colombi, S., Mellier, Y. eds., Wide Field Surveys in Cosmology, 14th IAP meeting) (Editions Frontieres, p. 61
Springel, V. et al. 2005, Nature, 435, 629
Tegmark, M., SDSS collaboration 2004 Ap.J., 606, 702
van de Weygaert, R. & Bertschinger, E. 1996, MNRAS, 281, 84
van de Weygaert, R. & Bond, J. R. 2008, Clusters and the Theory of the Cosmic Web , in Plionis, M., López-Cruz, O. & Hughes, D. eds., A Pan-Chromatic View of Clusters of Galaxies and the Large-Scale Structure, LNP 740 (Springer), p. 335
Zaroubi, S., Hoffman, Y., Fisher, K. B. & Lahav, O. 1995, ApJ, 449, 446
Zeldovich, Ya. B. 1970, AA, 5, 84
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Bayesian Cosmic Web Reconstruction: BARCODE for Clusters

  • E. G. Patrick Bos (a1), Rien van de Weygaert (a1), Francisco Kitaura (a2) and Marius Cautun (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed