Hostname: page-component-5db6c4db9b-qvlvc Total loading time: 0 Render date: 2023-03-24T00:04:54.394Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Bars in Cuspy Dark Halos

Published online by Cambridge University Press:  01 June 2008

John Dubinski
Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada email:
Ingo Berentzen
Astronomisches Rechen-Institut, Mönchhofstr. 12-14 69120, Heidelberg, Germany email:
Isaac Shlosman
JILA, University of Colorado, Boulder, CO 80309-0440, USA Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055, USA email:
Rights & Permissions[Opens in a new window]


HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We examine the bar instability in models with an exponential disk and a cuspy NFW-like dark matter (DM) halo inspired by cosmological simulations. Bar evolution is studied as a function of numerical resolution in a sequence of models spanning 104 – 108 DM particles - including a multi-mass model with an effective resolution of 1010. The goal is to find convergence in dynamical behaviour. We characterize the bar growth, the buckling instability, pattern speed decay through resonant transfer of angular momentum, and possible destruction of the DM halo cusp. Overall, most characteristics converge in behaviour for halos containing more than 107 particles in detail. Notably, the formation of the bar does not destroy the density cusp in this case. These higher resolution simulations clearly illustrate the importance of discrete resonances in transporting angular momentum from the bar to the halo.

Contributed Papers
Copyright © International Astronomical Union 2009


Athanassoula, E. 2002, ApJ (Letters), 569, L83CrossRefGoogle Scholar
Binney, J. & Spergel, D. 1982, ApJ, 252, 308CrossRefGoogle Scholar
Debattista, V. P. & Sellwood, J. A. 1998, ApJ (Letters), 493, L5+CrossRefGoogle Scholar
Debattista, V. P. & Sellwood, J. A. 2000, ApJ, 543, 704CrossRefGoogle Scholar
Dubinski, J. 1996, New Astronomy, 1, 133CrossRefGoogle Scholar
Dubinski, J., Berentzen, I., & Shlosman, I. 2008, in prep.Google Scholar
Hernquist, L. & Weinberg, M. D. 1992, ApJ, 400, 80CrossRefGoogle Scholar
Holley-Bockelmann, K., Weinberg, M., & Katz, N. 2005, MNRAS, 363, 991CrossRefGoogle Scholar
Jogee, S., et al. 2004, ApJ (Letters), 615, L105CrossRefGoogle Scholar
Knapen, J. H., Shlosman, I., & Peletier, R. F. 2000, ApJ, 529, 93CrossRefGoogle Scholar
Lynden-Bell, D. & Kalnajs, A. J. 1972, MNRAS, 157, 1CrossRefGoogle Scholar
Martinez-Valpuesta, I. & Shlosman, I. 2004, ApJ (Letters), 613, L29CrossRefGoogle Scholar
Martinez-Valpuesta, I., Shlosman, I., & Heller, C. 2006, ApJ, 637, 214CrossRefGoogle Scholar
O'Neill, J. K. & Dubinski, J. 2003, MNRAS, 346, 251CrossRefGoogle Scholar
Sellwood, J. A. 1980, A&A, 89, 296Google Scholar
Sellwood, J. A. 2003, ApJ, 587, 638CrossRefGoogle Scholar
Sheth, K. et al. 2008, ApJ, 675, 1141CrossRefGoogle Scholar
Tremaine, S. & Weinberg, M. D. 1984, MNRAS, 209, 729CrossRefGoogle Scholar
Weinberg, M. D. 1985, MNRAS, 213, 451CrossRefGoogle Scholar
Weinberg, M. D. & Katz, N. 2002, ApJ, 580, 627CrossRefGoogle Scholar
Weinberg, M. D. & Katz, N. 2007a, MNRAS, 375, 425CrossRefGoogle Scholar
Weinberg, M. D. & Katz, N. 2007b, MNRAS, 375, 460CrossRefGoogle Scholar
Widrow, L. M. & Dubinski, J. 2005, ApJ, 631, 838CrossRefGoogle Scholar