Skip to main content Accessibility help
×
Home

Atomic Chemistry in Turbulent Astrophysical Media

  • Evan Scannapieco (a1), William J. Gray (a2) and Daniel Kasen (a3)

Abstract

We decribe direct numerical simulations of turbulent astrophysical media exposed to the redshift zero metagalactic background. The simulations assume solar composition and explicitly track ionizations, recombinations, and ion-by-ion radiative cooling for hydrogen, helium, carbon, nitrogen, oxygen, neon, sodium, magnesium, silicon, and iron. Each run reaches a global steady state that not only depends on the ionization parameter, U, and mass-weighted average temperature, T MW, but also on the the one-dimensional turbulent velocity dispersion, σ1D.

We carry out runs that span a grid of models with U ranging from 0 to 10−2 and σ1D ranging from 12 to 58 km s−1, and we vary the product of the mean density and the driving scale of the turbulence, nL, which determines the average temperature of the medium, from nL =1016 to nL =1020 cm−2. The turbulent Mach numbers of our simulations vary from M ≈ 0.5 for the lowest velocity dispersions cases to M ≈ 20 for the largest velocity dispersion cases. When M ≲1, turbulent effects are minimal, and the species abundances are reasonably described as those of a uniform photoionized medium at a fixed temperature. On the other hand, when M ≳ 1, dynamical simulations such as the ones carried out here, are required to accurately predict the species abundances.

We gather our results into a set of tables, to allow future redshift zero studies of the intergalactic medium to account for turbulent effects. They are available at http://zofia.sese.asu.edu/~evan/turbspecies/ and will be updated as we increase our parameter study. These results are explained in more detailed in Gray, Scannapieco, & Kasen (2015), and Gray and Scannapieco (2015)

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Atomic Chemistry in Turbulent Astrophysical Media
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Atomic Chemistry in Turbulent Astrophysical Media
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Atomic Chemistry in Turbulent Astrophysical Media
      Available formats
      ×

Copyright

References

Hide All
Gray, W. J., Scannapieco, E., & Kasen, D. 2015, ApJ, 801, 107
Gray, W. J. & Scannapieco, E. 2015, ApJ, submitted
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Atomic Chemistry in Turbulent Astrophysical Media

  • Evan Scannapieco (a1), William J. Gray (a2) and Daniel Kasen (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed