Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-16T21:37:29.576Z Has data issue: false hasContentIssue false

ATLAS3D Stellar Population Gradients

Published online by Cambridge University Press:  10 April 2015

Harald Kuntschner*
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany. email: hkuntsch@eso.org
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present stellar population gradients of early-type galaxies from the ATLAS3D survey: a complete, volume-limited multi-wavelength survey of 260 early-type galaxies in the local 42 Mpc volume. Using emission-corrected spectra integrated within elliptical annuli we measure line-strength indices and apply single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement as function of radius. For all galaxies we derive basic linear stellar population gradients versus radius logR/Re). These gradients are examined on their own and versus three mass-sensitive parameters: K-band luminosity MK, velocity dispersion within one effective radius log σe, and our dynamical mass MJAM. We find a correlation between positive age gradients (younger centre) and steeper negative metallicity gradients with a Spearman rank correlation coefficient of -0.46 and a significance of 7.65 × 10−15. Furthermore, we find a robustly estimated mean metallicity gradient of Δ[Z/H] = -0.37 ± 0.01 for the sample with a significant trend for more massive galaxies to have shallower profiles. While there is no clear distinction between fast and slow rotators or signs of environmental influence, we do detect a significantly larger range of [Z/H]-gradients towards low mass galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Cappellari, M., Emsellem, E., Krajnović, D., et al., 2011, MNRAS, 413, 813Google Scholar
Cappellari, M., McDermid, R. M., Alatalo, K., et al. 2013, MNRAS, 432, 1862Google Scholar
Hopkins, P. F., Cox, T. J., Dutta, S. N., et al., 2009, ApJS, 181, 135Google Scholar
Koleva, M., Prugniel, P., de Rijcke, S., & Zeilinger, W. W., 2011, MNRAS, 417, 1643Google Scholar
Krajnović, D., Emsellem, E., Cappellari, M., et al., 2011, MNRAS, 414, 2923CrossRefGoogle Scholar
Kuntschner, H., Emsellem, E., Bacon, R., et al., 2006, MNRAS, 369, 497CrossRefGoogle Scholar
Kuntschner, H., Emsellem, E., Bacon, R., et al., 2010, MNRAS, 408, 97CrossRefGoogle Scholar
McDermid, E., et al., 2014, MNRAS, submittedGoogle Scholar
Rawle, T. D., Smith, R. J., & Lucey, J. R., 2010, MNRAS, 401, 852Google Scholar
Scott, N., Cappellari, M., Davies, R. L., et al., 2013, MNRAS, 432, 1894Google Scholar
Spolaor, M., Kobayashi, C., Forbes, D. A., Couch, W. J., & Hau, G. K. T., 2010, MNRAS, 408, 272CrossRefGoogle Scholar
Trager, S. C., Worthey, G., Faber, S. M., Burstein, D., & Gonzalez, J. J., 1998, ApJS, 116, 1CrossRefGoogle Scholar