“What do the progenitors of Type Ia supernovae (SNe Ia) look like? How can we hope to find them?” We focus on the epoch during which mass is incident on a white dwarf (WD) at high rates (> 10−7M⊙ yr−1). Such epochs are expected in single-degenerate (SD) progenitors, double-degenerate (DD) progenitors, and in a wide range of binaries with WDs that will not achieve the Chandrasekhar mass, MCh. High-rate accretion onto a WD produces high luminosities through accretion alone; in addition, most calculations show that quasisteady or episodic nuclear burning can occur, increasing the luminosity by more than an order of magnitude. If the photosphere is not much larger than the WD, the emission will have values of kT in the range of tens of eV, and the source will appear as a luminous supersoft x-ray source (SSS). Studies of local SSSs that are good candidates for nuclear-burning WDs (NBWDs) suggest that many have low duty cycles of SSS activity. This is consistent with the fact that binary WD models predict about 100 times as many SSSs in external galaxies of all types as are actually detected. Interstellar absorption does not appear to be the problem. Instead, it is likely that the ~1037−1038 erg s−1 emitted by NBWDs emerges in other wavebands. The challenge we face is to search for highly luminous systems within the Milky Way and nearby galaxies that have unusual properties consistent with NBWDs, and inconsistent with other physical models. Model tests can then be conducted for individual candidates, allowing us to identify large numbers of progenitors years before explosion.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.
To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.