Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-19T02:19:17.999Z Has data issue: false hasContentIssue false

Abundance Gradients and Chemical Evolution of Spiral Galaxies

Published online by Cambridge University Press:  09 March 2010

Monica M. Marcon-Uchida
Affiliation:
Dipartamento di Astronomia, Università degli Studi di Trieste, Via G.B. Tiepolo 11, I-34131, Trieste, Italy email: monica@astro.iag.usp.br Instituto de Astronomia, Geofísica e Ciéncias Atmosféricas(IAG), Universidade de São Paulo, Rua do Matão, 1226 05508-090 São Paulo, Brazil email: roberto@astro.iag.usp.br
Francesca Matteucci
Affiliation:
Dipartamento di Astronomia, Università degli Studi di Trieste, Via G.B. Tiepolo 11, I-34131, Trieste, Italy email: monica@astro.iag.usp.br I.N.A.F Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34131, Trieste, Italy email: matteucc@oats.inaf.it
Roberto D. D. Costa
Affiliation:
Instituto de Astronomia, Geofísica e Ciéncias Atmosféricas(IAG), Universidade de São Paulo, Rua do Matão, 1226 05508-090 São Paulo, Brazil email: roberto@astro.iag.usp.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The distribution of chemical abundances and their variation in space and time are important tools to understand the chemical evolution of disks in spiral galaxies. In this work we present an one infall chemical evolution model for the Galactic disk based on an updated version of the Trieste group model. We adopted a pre enriched gas (to take into account the effect of the halo evolution), an inside-out scenario for the formation of the disk and a threshold in the surface gas density to regulate the star formation rate. The observational constraints for the solar neighbourhood were well reproduced and the spatial and time evolution of the radial abundance gradient were studied. We also used this model to reproduce the chemical evolution of some nearby spiral galaxies. The model was scaled to the disk properties of each galaxy and its dependence with the star formation efficiency and the time scale for the infalling gas into the disk were explored. Using this modified model we were able to reproduce the observed constraints available in the literature for this galaxies. The similarities and the differences between the chemical evolution of these objects and teh Milky Way are discussed to provide a basis to the understanding of the chemical evolution of disks.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Boissier, S. & Prantzos, N. 1999, MNRAS, 307, 857Google Scholar
Boissier, S., Prantzos, N., Boselli, A., & Gavazzi, G. 2003, MNRAS, 346, 1215Google Scholar
Braun, R., Thilker, D. A., Walterbos, R. A. M., & Corbelli, E. 2009, ApJ, 695, 937Google Scholar
Chiappini, C., Matteucci, F., & Romano, D., 2001, ApJ, 554, 1044Google Scholar
Colavitti, E., Matteucci, F., & Murante, G. 2008, A&A, 483, 401Google Scholar
Magrini, L., Corbelli, E., & Galli, D. 2007, A&A, 470, 843Google Scholar
Magrini, L., Stanghellini, L., & Villaver, E. 2009, ApJ, 696, 729Google Scholar
Marcon-Uchida, M. M., Matteucci, F. & Costa, R. D. D. 2009, A&A submitted.Google Scholar
Matteucci, F. & Francois, P. 1989, MNRAS, 239, 885Google Scholar
Matteucci, F. & Recchi, S. 2001, ApJ, 558, 351Google Scholar
Pohlen, M., Beckman, J. E., Hüttemeister, S., Knapen, J. H., Erwin, P., & Dettmar, R.-J. 2004, Penetrating Bars Through Masks of Cosmic Dust, 319, 713Google Scholar