Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T23:00:32.363Z Has data issue: false hasContentIssue false

Absorption spectra from galactic wind models: a framework to link PLUTO simulations to TRIDENT

Published online by Cambridge University Press:  20 January 2023

Benedetta Casavecchia
Affiliation:
Dipartimento di Fisica e Astronomia, Università di Bologna, Via Gobetti 93/2, 40122, Bologna, Italy email: benedett.casavecchia@studio.unibo.it Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany
Wladimir E. Banda-Barragán
Affiliation:
Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany
Marcus Brüggen
Affiliation:
Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany
Fabrizio Brighenti
Affiliation:
Dipartimento di Fisica e Astronomia, Università di Bologna, Via Gobetti 93/2, 40122, Bologna, Italy email: benedett.casavecchia@studio.unibo.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Galactic winds probe how feedback regulates the mass and metallicity of galaxies. Galactic winds have cold gas, which is mainly observable with absorption and emission lines. Theoretically studying how absorption lines are produced requires numerical simulations and realistic starburst UV backgrounds. We use outputs from a suite of 3D PLUTO simulations of wind-cloud interactions to first estimate column densities and temperatures. Then, to create synthetic spectra, we developed a python interface to link our PLUTO simulations to TRIDENT via the YT-package infrastructure. We produce UV backgrounds accounting for the star formation rate of starbursts. For this purpose, we use fluxes generated by STARBURST99, which are then processed through CLOUDY to create customised ion tables. Such tables are subsequently read into TRIDENT to generate absorption spectra. We explain how the various packages and tools communicate with each other to create ion spectra consistent with spectral energy distributions of starburst systems.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Banda-Barragán, W. E., Brüggen, M., Federrath, C., Wagner, A. Y., Scannapieco, E., & Cottle, J. 2020, Shock-multicloud interactions in galactic outflows - I. Cloud layers with lognormal density distributions. MNRAS, 499(2), 21732195.Google Scholar
Banda-Barragán, W. E., Brüggen, M., Heesen, V., Scannapieco, E., Cottle, J., Federrath, C., & Wagner, A. Y. 2021, Shock-multicloud interactions in galactic outflows - II. Radiative fractal clouds and cold gas thermodynamics. MNRAS, 506(4), 56585680.CrossRefGoogle Scholar
Banda-Barragán, W. E., Federrath, C., Crocker, R. M., & Bicknell, G. V. 2018, Filament formation in wind-cloud interactions- II. Clouds with turbulent density, velocity, and magnetic fields. MNRAS, 473(3), 34543489.CrossRefGoogle Scholar
Banda-Barragán, W. E., Parkin, E. R., Federrath, C., Crocker, R. M., & Bicknell, G. V. 2016, Filament formation in wind-cloud interactions - I. Spherical clouds in uniform magnetic fields. MNRAS, 455(2), 13091333.CrossRefGoogle Scholar
Banda-Barragán, W. E., Zertuche, F. J., Federrath, C., Garca Del Valle, J., Brüggen, M., & Wagner, A. Y. 2019, On the dynamics and survival of fractal clouds in galactic winds. MNRAS, 486(4), 45264544.CrossRefGoogle Scholar
Chisholm, J., Bordoloi, R., Rigby, J. R., & Bayliss, M. 2018, Feeding the fire: tracing the mass-loading of 107 K galactic outflows with O VI absorption. MNRAS, 474(2), 16881704.CrossRefGoogle ScholarPubMed
Cimatti, A., Fraternali, F., & Nipoti, C. 2019, Introduction to Galaxy Formation and Evolution. From Primordial Gas to Present-Day Galaxies. arXiv e-prints, arXiv:1912.06216.Google Scholar
Cottle, J. N., Scannapieco, E., & Brüggen, M. 2018, Column Density Profiles of Cold Clouds Driven by Galactic Outflows. ApJ, 864(1), 96.CrossRefGoogle Scholar
Danehkar, A., Oey, M. S., & Gray, W. J. 2021, Catastrophic Cooling in Superwinds. II. Exploring the Parameter Space. ApJ, 921(1), 91.CrossRefGoogle Scholar
de la Cruz, L. M., Schneider, E. E., & Ostriker, E. C. 2021, Synthetic Absorption Lines from Simulations of Multiphase Gas in Galactic Winds. ApJ, 919(2), 112.CrossRefGoogle Scholar
Ferland, G. J., Chatzikos, M., Guzmán, F., Lykins, M. L., van Hoof, P. A. M., Williams, R. J. R., Abel, N. P., Badnell, N. R., Keenan, F. P., Porter, R. L., & Stancil, P. C. 2017, The 2017 Release Cloudy. Rev. Mex. Astron. Astrofis., 53, 385438.Google Scholar
Goldsmith, K. J. A. & Pittard, J. M. 2018, A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution. MNRAS, 476(2), 22092219.Google Scholar
Haardt, F. & Madau, P. 2012, Radiative Transfer in a Clumpy Universe. IV. New Synthesis Models of the Cosmic UV/X-Ray Background. ApJ, 746(2), 125.Google Scholar
Hummels, C. B., Smith, B. D., & Silvia, D. W. 2017, Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations. ApJ, 847(1), 59.CrossRefGoogle Scholar
McClure-Griffiths, N. M., Green, J. A., Hill, A. S., Lockman, F. J., Dickey, J. M., Gaensler, B. M., & Green, A. J. 2013, Atomic Hydrogen in a Galactic Center Outflow. ApJ, 770(1), L4.CrossRefGoogle Scholar
Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C., & Ferrari, A. 2007, PLUTO: A Numerical Code for Computational Astrophysics. ApJS, 170(1), 228242.CrossRefGoogle Scholar
Richter, P., Nuza, S. E., Fox, A. J., Wakker, B. P., Lehner, N., Ben Bekhti, N., Fechner, C., Wendt, M., Howk, J. C., Muzahid, S., Ganguly, R., & Charlton, J. C. 2017, An HST/COS legacy survey of high-velocity ultraviolet absorption in the Milky Way’s circumgalactic medium and the Local Group. A&A, 607, A48.Google Scholar
Scannapieco, E. & Brüggen, M. 2015, The Launching of Cold Clouds by Galaxy Outflows. I. Hydrodynamic Interactions with Radiative Cooling. ApJ, 805(2), 158.CrossRefGoogle Scholar
Smith, B., Sigurdsson, S., & Abel, T. 2008, Metal cooling in simulations of cosmic structure formation. MNRAS, 385(3), 14431454.CrossRefGoogle Scholar
Smith, B. D., Bryan, G. L., Glover, S. C. O., Goldbaum, N. J., Turk, M. J., Regan, J., Wise, J. H., Schive, H.-Y., Abel, T., Emerick, A., O’Shea, B. W., Anninos, P., Hummels, C. B., & Khochfar, S. 2017, GRACKLE: a chemistry and cooling library for astrophysics. MNRAS, 466(2), 22172234.CrossRefGoogle Scholar
Tchernyshyov, K., Werk, J. K., Wilde, M. C., Prochaska, J. X., Tripp, T. M., Burchett, J. N., Bordoloi, R., Howk, J. C., Lehner, N., O’Meara, J. M., Tejos, N., & Tumlinson, J. 2021, The CGM2 Survey: Circumgalactic O VI from dwarf to massive star-forming galaxies. arXiv e-prints, arXiv:2110.13167.Google Scholar
Tumlinson, J., Peeples, M. S., & Werk, J. K. 2017, The Circumgalactic Medium. ARA&A, 55(1), 389432.Google Scholar
Turk, M. J., Smith, B. D., Oishi, J. S., Skory, S., Skillman, S. W., Abel, T., & Norman, M. L. 2011, yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data. The Astrophysical Journal Supplement Series, 192, 9.CrossRefGoogle Scholar
Vázquez, G. A. & Leitherer, C. Modeling Small Stellar Populations Using Starburst99. In Charbonnel, C. & Nota, A., editors, Formation, Evolution, and Survival of Massive Star Clusters 2017, volume 316, pp. 359360.Google Scholar
Veilleux, S., Maiolino, R., Bolatto, A. D., & Aalto, S. 2020, Cool outflows in galaxies and their implications. A&ARv, 28(1), 2.Google Scholar
Werk, J. K., Prochaska, J. X., Tumlinson, J., Peeples, M. S., Tripp, T. M., Fox, A. J., Lehner, N., Thom, C., O’Meara, J. M., Ford, A. B., Bordoloi, R., Katz, N., Tejos, N., Oppenheimer, B. D., Davé, R., & Weinberg, D. H. 2014, The COS-Halos Survey: Physical Conditions and Baryonic Mass in the Low-redshift Circumgalactic Medium. ApJ, 792(1), 8.CrossRefGoogle Scholar