No CrossRef data available.
Published online by Cambridge University Press: 04 June 2020
In the quest to study early star-formation physics in the universe, one of the most sought after tracers is HeIIλ1640, with its presence in the lack of other metal emission/absorption lines generally being interpreted as evidence for metal-poor stellar populations. HeII ionizing photons are produced via sources of hard ionizing radiation and requires photons with energies ⩾ 54.4eV, however, traditional stellar population models lack sufficient ionising photons to match with current observations. Our analysis of z = 2 – 4 HeIIλ1640 emitters from deep 10-30h pointings from MUSE has shown that ISM properties inferred from multiple rest-UV diagnostics are not compatible with requirements necessary to reproduce HeIIλ1640 equivalent-widths. Thus, we have used latest generation of single, rotational, and binary stellar population models with realistic dust physics to explore rest-UV emission line diagnostics and link with H and He+ ionisation photon production efficiencies (ξion (H,He+)) in a variety of stellar/gas metallicities and star-formation histories. I will discus our latest results and show that including ‘exotic’ stellar phenomena such as extreme low-metallicity binary stars, X-ray binaries, and dust dissociation physics may be necessary to lessen the tension between models and observations.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between 04th June 2020 - 15th April 2021. This data will be updated every 24 hours.