Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s65px Total loading time: 0.243 Render date: 2021-03-05T05:16:20.208Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Star formation in cloud cores — simulations and observations of dense molecular cores and the formation of solar mass stars

Published online by Cambridge University Press:  13 January 2020

C. Federrath
Affiliation:
Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia email: christoph.federrath@anu.edu.au
Corresponding

Abstract

Star formation is inefficient. Recent advances in numerical simulations and theoretical models of molecular clouds show that the combined effects of interstellar turbulence, magnetic fields and stellar feedback can explain the low efficiency of star formation. The star formation rate is highly sensitive to the driving mode of the turbulence. Solenoidal driving may be more important in the Central Molecular Zone, compared to more compressive driving agents in spiral-am clouds. Both theoretical and observational efforts are underway to determine the dominant driving mode of turbulence in different Galactic environments. New observations with ALMA, combined with other instruments such as CARMA, JCMT and the SMA begin to reveal the magnetic field structure of dense cores and protostellar disks, showing highly complex field geometries with ordered and turbulent field components. Such complex magnetic fields can give rise to a range of stellar masses and jet/outflow efficiencies in dense cores and protostellar accretion disks.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

Access options

Get access to the full version of this content by using one of the access options below.

References

Arzoumanian, D., Shimajiri, Y., Inutsuka, S.-i., Inoue, T., & Tachihara, K. 2018, PASJ, 70, 96 CrossRefGoogle Scholar
Bate, M. R. 2012, MNRAS, 419, 3115 CrossRefGoogle Scholar
Brunt, C. M., & Federrath, C. 2014, MNRAS, 442, 1451 CrossRefGoogle Scholar
Cox, E. G., Harris, R. J., Looney, L. W., et al. 2018, ApJ, 855, 92 CrossRefGoogle Scholar
Cunningham, A. J., Krumholz, M. R., McKee, C. F., & Klein, R. I. 2018, MNRAS, 476, 771 CrossRefGoogle Scholar
Federrath, C. 2013a, MNRAS, 436, 1245 CrossRefGoogle Scholar
Federrath, C. 2013b, MNRAS, 436, 3167 CrossRefGoogle Scholar
Federrath, C. 2015, MNRAS, 450,xs 4035 CrossRefGoogle Scholar
Federrath, C. 2016, JPP, 82, 535820601 Google Scholar
Federrath, C., & Klessen, R. S. 2012, ApJ, 761, 156 CrossRefGoogle Scholar
Federrath, C., & Klessen, R. S. 2013, ApJ, 763, 51 CrossRefGoogle Scholar
Federrath, C., Klessen, R. S., & Schmidt, W. 2008, ApJ, 688, L79 CrossRefGoogle Scholar
Federrath, C., Krumholz, M., & Hopkins, P. F. 2017a, Journal of Physics Conference Series, 837, 012007 CrossRefGoogle Scholar
Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W., & Mac Low, M. 2010, A&A, 512, A81 Google Scholar
Federrath, C., Rathborne, J. M., Longmore, S. N., et al. 2016, ApJ, 832, 143 CrossRefGoogle Scholar
Federrath, C., Rathborne, J. M., Longmore, S. N., et al. 2017b, IAU Symposium, 322, ed. Crocker, R. M., Longmore, S. N., & Bicknell, G. V., 123128 Google Scholar
Gerrard, I. A., Federrath, C., & Kuruwita, R. L. 2019, MNRAS, submittedGoogle Scholar
Guszejnov, D., Hopkins, P. F., Grudic′, M. Y., Krumholz, M. R., & Federrath, C. 2018, MNRASGoogle Scholar
Hennebelle, P., & Chabrier, G. 2011, ApJ, 743, L29 CrossRefGoogle Scholar
Hernandez, A. K., & Tan, J. C. 2015, ApJ, 809, 154 CrossRefGoogle Scholar
Hopkins, P. F., Kereˇs, D., On˜orbe, J., et al. 2014, MNRAS, 445, 581 CrossRefGoogle Scholar
Hull, C. L. H., Girart, J. M., Tychoniec, Ł., et al. 2017, ApJ, 847, 92 CrossRefGoogle Scholar
Jin, K., Salim, D. M., Federrath, C., et al. 2017, MNRAS, 469, 383 CrossRefGoogle Scholar
Kainulainen, J., Federrath, C., & Henning, T. 2013, A&A, 553, L8 Google Scholar
Kainulainen, J., Federrath, C., & Henning, T. 2014, Science, 344, 183 CrossRefGoogle Scholar
Kauffmann, J., Pillai, T., & Goldsmith, P. F. 2013, ApJ, 779, 185 CrossRefGoogle Scholar
Konstandin, L., Girichidis, P., Federrath, C., & Klessen, R. S. 2012, ApJ, 761, 149 CrossRefGoogle Scholar
Körtgen, B., Federrath, C., & Banerjee, R. 2017, MNRAS, 472, 2496 CrossRefGoogle Scholar
Krumholz, M. R., Klein, R. I., & McKee, C. F. 2012, ApJ, 754, 71 CrossRefGoogle Scholar
Krumholz, M. R., & McKee, C. F. 2005, ApJ, 630, 250 CrossRefGoogle Scholar
Krumholz, M. R., & Tan, J. C. 2007, ApJ, 654, 304 CrossRefGoogle Scholar
Kuruwita, R. L., Federrath, C., & Ireland, M. 2017, MNRAS, 470, 1626 CrossRefGoogle Scholar
Lee, C.-F., Li, Z.-Y., Hirano, N., et al. 2018, ApJ, 863, 94 CrossRefGoogle Scholar
Offner, S. S. R., Klein, R. I., McKee, C. F., & Krumholz, M. R. 2009, ApJ, 703, 131 CrossRefGoogle Scholar
Onus, A., Krumholz, M. R., & Federrath, C. 2018, MNRAS, 479, 1702 CrossRefGoogle Scholar
Orkisz, J. H., Pety, J., Gerin, M., et al. 2017, A&A, 599, A99 Google Scholar
Padoan, P., & Nordlund, Å. 2011, ApJ, 730, 40 CrossRefGoogle Scholar
Sharda, P., Federrath, C., da Cunha, E., Swinbank, A. M., & Dye, S. 2018, MNRAS, 477, 4380 CrossRefGoogle Scholar
Taylor, P., & Kobayashi, C. 2015, MNRAS, 448, 1835 CrossRefGoogle Scholar
Zhang, Y., Higuchi, A. E., Sakai, N., et al. 2018, ApJ, 864, 76 CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 49 *
View data table for this chart

* Views captured on Cambridge Core between 13th January 2020 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Star formation in cloud cores — simulations and observations of dense molecular cores and the formation of solar mass stars
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Star formation in cloud cores — simulations and observations of dense molecular cores and the formation of solar mass stars
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Star formation in cloud cores — simulations and observations of dense molecular cores and the formation of solar mass stars
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *