Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-xbbwl Total loading time: 0.251 Render date: 2021-03-07T19:01:56.129Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Probing the ISM of Heiiλ1640 emitters at z = 2–4 via MUSE

Published online by Cambridge University Press:  10 June 2020

Themiya Nanayakkara
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands email: nanayakkara@strw.leidenuniv.nl
Jarle Brinchmann
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands email: nanayakkara@strw.leidenuniv.nl Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal. email: jarle@astro.up.pt
Corresponding

Abstract

Heiiλ1640 emission in the absence of other metal lines is the most sought-after emission line to detect and characterize metal free stellar populations. However, even recent stellar population models with sophisticated treatment of stellar evolution also lack sufficient He+ ionising photons to reproduce observed He 0.1em ii fluxes. We use VLT/MUSE GTO observations to compile a catalogue of 15 z ∼ 2–4 He ii λ1640 emitters from ∼10–30 hour pointings. We show that both He ii λ1640 detections and non-detections occupy similar distribution in UV absolute magnitudes. Rest-UV emission line analysis of our sample shows that the emission lines of our He ii λ1640 emitters are driven by star-formation in solar to moderately sub-solar (∼1/20th) metallicity conditions. However, we find that even after considering effects from binary stars, we are unable to reproduce the He ii λ1640 equivalent widths. Alternative mechanisms are necessary to compensate for the missing He+ ionising photons.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

Access options

Get access to the full version of this content by using one of the access options below.

References

Agarwal, B., Johnson, J. L., Zackrisson, E., et al. 2016, MNRAS, 460, 4003CrossRefGoogle Scholar
Bacon, R., Accardo, M., Adjali, L., et al. 2010, in Proc. SPIE, Vol. 7735, Ground-based and Airborne Instrumentation for Astronomy III, 773508Google Scholar
Bacon, R., Brinchmann, J., Richard, J., et al. 2015, A&A, 575, A75Google Scholar
Bacon, R., Conseil, S., Mary, D., et al. 2017, A&A, 608, A1Google Scholar
Berg, D. A., Erb, D. K., Auger, M. W., Pettini, M., & Brammer, G. B. 2018, ArXiv e-prints,arXiv:1803.02340Google Scholar
Berg, D. A., Skillman, E. D., Henry, R. B. C., Erb, D. K., & Carigi, L. 2016, ApJ, 827, 126CrossRefGoogle Scholar
Binette, L., Magris, C. G., Stasińska, G., & Bruzual, A. G. 1994, A&A, 292, 13Google Scholar
Bowler, R. A. A., Dunlop, J. S., McLure, R. J., & McLeod, D. J. 2017, MNRAS, 466, 3612CrossRefGoogle Scholar
Casares, J., Jonker, P. G., & Israelian, G. 2017, ArXiv e-prints,arXiv:1701.07450[astro-ph.HE]Google Scholar
Cassata, P., Le Fèvre, O., Charlot, S., et al. 2013, A&A, 556, A68Google Scholar
Eldridge, J. J., Stanway, E. R., Xiao, L., et al. 2017, PASA, 34, e058CrossRefGoogle Scholar
Epinat, B., Contini, T., Finley, H., et al. 2018, A&A, 609, A40Google Scholar
Fardal, M. A., Katz, N., Gardner, J. P., et al. 2001, ApJ, 562, 605CrossRefGoogle Scholar
Götberg, Y., de Mink, S. E., & Groh, J. H. 2017, A&A, 608, A11Google Scholar
Gräfener, G., & Vink, J. S. 2015, A&A, 578, L2Google Scholar
Gutkin, J., Charlot, S., & Bruzual, G. 2016, MNRAS, 462, 1757CrossRefGoogle Scholar
Inami, H., Bacon, R., Brinchmann, J., et al. 2017, A&A, 608, A2Google Scholar
Inoue, A. K., Kousai, K., Iwata, I., et al. 2011, MNRAS, 411, 2336CrossRefGoogle Scholar
Izotov, Y. I., Thuan, T. X., & Privon, G. 2012, MNRAS, 427, 1229CrossRefGoogle Scholar
Kacprzak, G. G., van de Voort, F., Glazebrook, K., et al. 2016, ApJL, 826, L11CrossRefGoogle Scholar
Kewley, L. J., Yuan, T., Nanayakkara, T., et al. 2016, ApJ, 819, 100CrossRefGoogle Scholar
Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415CrossRefGoogle Scholar
Marino, R. A., Cantalupo, S., Lilly, S. J., et al. 2018, ApJ, 859, 53CrossRefGoogle Scholar
Matthee, J., Sobral, D., Boone, F., et al. 2017, ApJ, 851, 14510.3847/1538-4357/aa9931CrossRefGoogle Scholar
Naidu, R. P., Oesch, P. A., Reddy, N., et al. 2017, ApJ, 847, 12CrossRefGoogle Scholar
Nanayakkara, T., Brinchmann, J., & The MUSE Collaboration. 2018, arXiv e-prints,arXiv:1809.10970Google Scholar
Nanayakkara, T., Glazebrook, K., Kacprzak, G. G., et al. 2016, ApJ, 828, 21CrossRefGoogle Scholar
. 2017, MNRAS, 468, 3071CrossRefGoogle Scholar
Patrcio, V., Richard, J., Verhamme, A., et al. 2016, MNRAS, 456, 4191CrossRefGoogle Scholar
Raiter, A., Schaerer, D., & Fosbury, R. A. E. 2010, A&A, 523, A64Google Scholar
Senchyna, P., Stark, D. P., Vidal-Garca, A., et al. 2017, ArXiv e-prints,arXiv:1706.00881Google Scholar
Shibuya, T., Ouchi, M., Harikane, Y., et al. 2017, ArXiv e-prints,arXiv:1705.00733Google Scholar
Shirazi, M., & Brinchmann, J. 2012, MNRAS, 421, 1043CrossRefGoogle Scholar
Sobral, D., Matthee, J., Darvish, B., et al. 2015, ApJ, 808, 139CrossRefGoogle Scholar
Sobral, D., Matthee, J., Brammer, G., et al. 2018, MNRAS, 2683Google Scholar
Steidel, C. C., Strom, A. L., Pettini, M., et al. 2016, ApJ, 826, 159CrossRefGoogle Scholar
Strom, A. L., Steidel, C. C., Rudie, G. C., et al. 2017, ApJ, 836, 164CrossRefGoogle Scholar
Tumlinson, J., Shull, J. M., & Venkatesan, A. 2003, ApJ, 584, 60810.1086/345737CrossRefGoogle Scholar
Xiao, L., Stanway, E. R., & Eldridge, J. J. 2018, MNRAS, 477, 904CrossRefGoogle Scholar
Yang, Y., Zabludoff, A. I, Davé, R., et al. 2006, ApJ, 640, 539CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 10 *
View data table for this chart

* Views captured on Cambridge Core between 10th June 2020 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Probing the ISM of Heiiλ1640 emitters at z = 2–4 via MUSE
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Probing the ISM of Heiiλ1640 emitters at z = 2–4 via MUSE
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Probing the ISM of Heiiλ1640 emitters at z = 2–4 via MUSE
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *