Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T16:54:40.593Z Has data issue: false hasContentIssue false

Gas-Star Formation Cycle in Nearby Galaxies

Published online by Cambridge University Press:  09 June 2023

Hsi-An Pan
Department of Physics, Tamkang University, No.151, Yingzhuan Road, Tamsui District, New Taipei City 251301, Taiwan email:
Eva Schinnerer
Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
Annie Hughes
CNRS, IRAP, Av. du Colonel Roche BP 44346, F-31028 Toulouse cedex 4, France
Adam Leroy
Department of Astronomy, The Ohio State University, 140 West 18th Ave, Columbus, OH 43210, USA
Brent Groves
International Centre for Radio Astronomy Research, The University of Western Australia, Crawley, WA 6009, Australia


Star formation, from cold giant molecular clouds to diverse population of stars, is a complex process involving a wide variety of physical processes. In this work, we constrain the link between the gas-star formation cycle and several secular and environmental probe of galaxies. Specifically, we quantify the spatial correlation between molecular gas and star-forming regions for 49 nearby galaxies using the ALMA and narrowband-Hα imaging from the PHANGS survey. At the resolution (150 pc) at which the individual molecular clouds and star-forming regions can be identified, we find that molecular clouds and star-forming regions do not necessarily coexist. The decoupled molecular clouds and star-forming regions are a signature of evolutionary cycling and feedback of the star formation process. Therefore, the impact of galactic-scale conditions and environments must be considered for a complete understanding of how stars form in galaxies and how this process influences the evolution of the host galaxies.

Contributed Paper
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Bigiel, F., Leroy, A., Walter, F., et al. 2008, AJ, 136, 2846. doi: 10.1088/0004-6256/136/6/2846 CrossRefGoogle Scholar
Jeffreson, S. M. R., Kruijssen, J. M. D., Keller, B. W., et al. 2020, MNRAS, 498, 385. doi: 10.1093/mnras/staa2127 CrossRefGoogle Scholar
Kreckel, K., Faesi, C., Kruijssen, J. M. D., et al. 2018, ApJL, 863, L21. doi: 10.3847/2041-8213/aad77d CrossRefGoogle Scholar
Leroy, A. K., Schinnerer, E., Hughes, A., et al. 2021, ApJS, 257, 43. doi: 10.3847/1538-4365/ac17f3 CrossRefGoogle Scholar
Onodera, S., Kuno, N., Tosaki, T., et al. 2010, ApJL, 722, L127. doi: 10.1088/2041-8205/722/2/L127 CrossRefGoogle Scholar
Pan, H.-A., Schinnerer, E., Hughes, A., et al. 2022, ApJ, 927, 9. doi: 10.3847/1538-4357/ac474f CrossRefGoogle Scholar
Pety, J., Schinnerer, E., Leroy, A. K., et al. 2013, ApJ, 779, 43. doi: 10.1088/0004-637X/779/1/43 CrossRefGoogle Scholar
Schinnerer, E., Hughes, A., Leroy, A., et al. 2019, ApJ, 887, 49. doi: 10.3847/1538-4357/ab50c2 CrossRefGoogle Scholar
Schmidt, M. 1959, ApJ, 129, 243. doi: 10.1086/146614 CrossRefGoogle Scholar