Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-cs4hf Total loading time: 1.216 Render date: 2021-04-17T15:39:19.957Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The dynamo-wind feedback loop : Assessing their non-linear interplay

Published online by Cambridge University Press:  24 September 2020

Barbara Perri
Affiliation:
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France Institut d’Astrophysique Spatiale, CNRS, Université Paris-Sud, Université Paris-Saclay, Bât. 121, 91405 Orsay Cedex, France
Allan Sacha Brun
Affiliation:
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France
Antoine Strugarek
Affiliation:
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France
Victor Réville
Affiliation:
IRAP, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France, 14 Avenue Edouard Belin, F-31400 Toulouse, France

Abstract

Though generated deep inside the convection zone, the solar magnetic field has a direct impact on the Earth space environment via the Parker spiral. It strongly modulates the solar wind in the whole heliosphere, especially its latitudinal and longitudinal speed distribution over the years. However the wind also influences the topology of the coronal magnetic field by opening the magnetic field lines in the coronal holes, which can affect the inner magnetic field of the star by altering the dynamo boundary conditions. This coupling is especially difficult to model because it covers a large variety of spatio-temporal scales. Quasi-static studies have begun to help us unveil how the dynamo-generated magnetic field shapes the wind, but the full interplay between the solar dynamo and the solar wind still eludes our understanding.

We use the compressible magnetohydrodynamical (MHD) code PLUTO to compute simultaneously in 2.5D the generation and evolution of magnetic field inside the star via an α-Ω dynamo process and the corresponding evolution of a polytropic coronal wind over several activity cycles for a young Sun. A multi-layered boundary condition at the surface of the star connects the inner and outer stellar layers, allowing both to adapt dynamically. Our continuously coupled dynamo-wind model allows us to characterize how the solar wind conditions change as a function of the cycle phase, and also to quantify the evolution of integrated quantities such as the Alfvén radius. We further assess the impact of the solar wind on the dynamo itself by comparing our results with and without wind feedback.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

Access options

Get access to the full version of this content by using one of the access options below.

References

Brun, A. S. & Browning, M. K. 2017, Living Reviews in Solar Physics, 14, 4CrossRefGoogle Scholar
Charbonneau, P. 2010, Living Reviews in Solar Physics, 7, 3CrossRefGoogle Scholar
Dedner, A., Kemm, F., Kröner, D., et al. 2002, Journal of Computational Physics, 175, 645CrossRefGoogle Scholar
DeRosa, M. L., Brun, A. S., & Hoeksema, J. T. 2012, ApJ, 757, 96CrossRefGoogle Scholar
Einfeldt, B. 1988, SIAM Journal on Numerical Analysis, 25, 294CrossRefGoogle Scholar
Gary, G. A. 2001, Sol. Phys., 203, 71CrossRefGoogle Scholar
Gudiksen, B. V., Carlsson, M., Hansteen, V. H., et al. 2011, A&A, 531, A154Google Scholar
Jouve, L. & Brun, A. S. 2007, A&A, 474, 239Google Scholar
Jouve, L., Brun, A. S., Arlt, R., et al. 2008, A&A, 483, 949Google Scholar
Keppens, R. & Goedbloed, J. P. 1999, A&A, 343, 251Google Scholar
Luhmann, J. G., Li, Y., Arge, C. N., et al. 2002, Journal of Geophysical Research (Space Physics), 107, 1154Google Scholar
Matt, S. & Pudritz, R. E. 2008, ApJ, 678, 1109CrossRefGoogle Scholar
McComas, D. J., Ebert, R. W., Elliott, H. A., et al. 2008, Geophys. Res. Lett., 35, L18103CrossRefGoogle Scholar
Moffatt, H. K. 1978, Cambridge Monographs on Mechanics and Applied MathematicsGoogle Scholar
Owens, M. J., Lockwood, M., & Riley, P. 2017, Scientific Reports, 7, 41548CrossRefGoogle Scholar
Parker, E. N. 1958, ApJ, 128, 664CrossRefGoogle Scholar
Parker, E. N. 1993, ApJ, 408, 707CrossRefGoogle Scholar
Perri, B., Brun, A. S., Réville, V., et al. 2018, Journal of Plasma Physics, 84, 765840501CrossRefGoogle Scholar
Pinto, R. F., Brun, A. S., Jouve, L., et al. 2011, ApJ, 737, 72CrossRefGoogle Scholar
Pouquet, A., Frisch, U., & Leorat, J. 1976, Journal of Fluid Mechanics, 77, 321CrossRefGoogle Scholar
Réville, V., Brun, A. S., Matt, S. P., et al. 2015, ApJ, 798, 116CrossRefGoogle Scholar
Réville, V. & Brun, A. S. 2017, ApJ, 850, 45CrossRefGoogle Scholar
Sakurai, T. 1985, A&A, 152, 121Google Scholar
Spiegel, E. A. & Zahn, J.-P. 1992, A&A, 265, 106Google Scholar
Stein, R. F. & Nordlund, Å. 2006, ApJ, 642, 1246CrossRefGoogle Scholar
Tavakol, R., Tworkowski, A. S., Brandenburg, A., et al. 1995, A&A, 296, 269Google Scholar
Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M. S., et al. 2003, ARA&A, 41, 599CrossRefGoogle Scholar
Vögler, A., Shelyag, S., Schüssler, M., et al. 2005, A&A, 429, 335Google Scholar
von Rekowski, B. & Brandenburg, A. 2006, Astronomische Nachrichten, 327, 53CrossRefGoogle Scholar
Weber, E. J. & Davis, L. 1967, ApJ, 148, 217CrossRefGoogle Scholar
Wedemeyer-Böhm, S., Lagg, A., & Nordlund, Å. 2009, Space Sci. Rev., 144, 317CrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 11 *
View data table for this chart

* Views captured on Cambridge Core between 24th September 2020 - 17th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The dynamo-wind feedback loop : Assessing their non-linear interplay
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The dynamo-wind feedback loop : Assessing their non-linear interplay
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The dynamo-wind feedback loop : Assessing their non-linear interplay
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *