Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-sbc4w Total loading time: 5.705 Render date: 2021-03-07T03:44:21.127Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The birth environment of the solar system constrained by the relative abundances of the solar radionuclides

Published online by Cambridge University Press:  13 January 2020

Edward D. Young
Affiliation:
Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles email: eyoung@epss.ucla.edu
Corresponding
E-mail address:

Abstract

The relative abundances of the radionuclides in the solar system at the time of its birth are crucial arbiters for competing hypotheses regarding the birth environment of the Sun. The presence of short-lived radionuclides, as evidenced by their decay products in meteorites, has been used to suggest that particular, sometimes exotic, stellar sources were proximal to the Sun’s birth environment. The recent confirmation of neutron star - neutron star (NS-NS) mergers and associated kilonovae as potentially dominant sources of r-process nuclides can be tested in the case of the solar birth environment using the relative abundances of the longer-lived nuclides. Critical analysis of the 15 radionuclides and their stable partners for which abundances and production ratios are well known suggests that the Sun formed in a typical massive star-forming region (SFR). The apparent overabundances of short-lived radionuclides (e.g. 26Al, 41Ca, 36Cl) in the early solar system appears to be an artifact of a heretofore under-appreciation for the important influences of enrichment by Wolf-Rayet winds in SFRs. The long-lived nuclides (e.g. 238U, 244Pu, 247Cr, 129I) are consistent with an average time interval between production events of 108 years, seemingly too short to be the products of NS-NS mergers alone. The relative abundances of all of these nuclides can be explained by their mean decay lifetimes and an average residence time in the ISM of ∼200 Myr. This residence time evidenced by the radionuclides is consistent with the average lifetime of dust in the ISM and the timescale for converting molecular cloud mass to stars.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020 

Access options

Get access to the full version of this content by using one of the access options below.

References

Adams, F. C. 2010, Annu. Rev. Astron. Astrophys., 48, 47 CrossRefGoogle Scholar
Adams, F. C., Fatuzzo, M., & Holden, L. 2014, ApJ, 789, 18pp Google Scholar
Brennecka, G. A. & Kleine, T. 2017, ApJL, 837, 6pp CrossRefGoogle Scholar
Cote, B., Belczynski, K., Fryer, C. L., Ritter, C., Paul, A., Wehmeyer, B., & O’Shea, B. W. 2017, ApJ, 836, 20ppCrossRefGoogle Scholar
Cote, B., Eichler, M., Arcones, A., Hansen, C. J., Simonetti, P., Frebel, A., Fryer, C. L., Pignatari, M., Reichert, M., Belczynski, K., & Matteucci, F. 2018, arXiv:1809.03525v2Google Scholar
Diehl, R., Halloin, H., Kretschmer, K., Lichti, G., Schonfelder, V., Strong, A., von Kienlin, A., Wang, W., Jean, P., Knodlseder, J., Roques, J., Weidenspointner, G., Schanne, S., Hartmann, D., Winkler, C., & Wunderer, C. 2006, Nature, 439, 45 CrossRefGoogle Scholar
Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium (Princeton, N.J.: Princeton University Press)CrossRefGoogle Scholar
Dwarkadas, V. V., Dauphas, N., Meyer, B., Boyajian, P., & Bojazi, M. 2017, ApJ, 851, 14ppCrossRefGoogle Scholar
Fryer, C. L. 1999, ApJ, 522, 413 10.1086/307647CrossRefGoogle Scholar
Fujimoto, Y., Krumholz, M. R., & Tachibana, S. 2018, MNRAS, 480, 4025 CrossRefGoogle Scholar
Goriely, S. & Arnould, M. 2001, A&A, 379, 1113 Google Scholar
Gounelle, M. & Meynet, G. 2012, A&A, 545, A4 Google Scholar
Harper, Charles L., J. 1996, AJ, 466, 1026 10.1086/177573CrossRefGoogle Scholar
Huss, G., Meyer, B. S., Srinivasan, G., Goswami, J. N., & Sahijpal, S. 2009, Geochemica et Cosmochimica Acta, 73, 4922 CrossRefGoogle Scholar
Iizuka, T., Lai, Y.-J., Akram, W., Amelin, Y., & Schonbachler, M. 2016, Earth and Planetary Science Letters, 439, 172 CrossRefGoogle Scholar
Jacobsen, S. 2005, in Chondrites and the Protoplanetary Disk, ed. Krot, A., Scott, E., & Reipurth, B., Vol. 341 ASP, 548–557Google Scholar
Jura, M., Xu, S., & Young, E. D. 2013, ApJ, 775, L41 CrossRefGoogle Scholar
Kasen, D., Metzger, B., Barnes, J., Quataert, E., & Ramirez-Ruiz, E. 2017, Nature, 551, 80 10.1038/nature24453CrossRefGoogle Scholar
Lugaro, M., Heger, A., Osrin, D., Goriely, S., Zuber, K., Karakas, A., Gibson, B. K., Dopherty, C. L., Lattanzio, J. C., & Ott, U. 2014, Science, 345, 650 CrossRefGoogle Scholar
Martin, P., Knodlseder, J., Diehl, R., & Meynet, G. 2009, A&A, 506, 703 Google Scholar
Meyer, B. S. & Clayton, D. D. 2000, Sp.Sci.Rev., 92, 133 CrossRefGoogle Scholar
Rauscher, T., Heger, A., Hoffman, R., & Woosley, S. 2002, ApJ, 576, 323 CrossRefGoogle Scholar
Schonbachler, M., Rehkamper, M., Halliday, A. N., Lee, D.-C., Bourot-Denise, M., Zanda, B., Hattendorf, B., & Gunther, D. 2002, Science, 295, 1705 CrossRefGoogle Scholar
Smartt, S. J. 2009, Annu. Rev. Astron. Astrophys., 47, 63 CrossRefGoogle Scholar
Smartt, S. J., Chen, T.-W., Jerkstrand, A., et al. 2017, Nature, 551, 75 CrossRefGoogle Scholar
Sukhbold, T., Woosley, S. E., & Heger, A. 2018, ApJ, 869, 22ppGoogle Scholar
Thielemann, F.-K., Eichler, M., Panov, I. V., & Wehmeyer, B. 2017, Ann. Rev.Nuc.& Part.Sci., 67, 253 10.1146/annurev-nucl-101916-123246CrossRefGoogle Scholar
Tielens, A. 2005, in The Physics and Chemistry of the Interstellar Medium, 461475 CrossRefGoogle Scholar
Tissot, F. L. H., Dauphas, N., & Grossman, L. 2016, Science Advances, 2, 7 pp CrossRefGoogle Scholar
Tsujimoto, T. & Shigeyama, T. 2014, A&A, 565, 4ppGoogle Scholar
Wasserburg, G. J., Busso, M., & Gallino, R. 1996, ApJ, 466, L109 CrossRefGoogle Scholar
Wasserburg, G. J., Busso, M., Gallino, R., & Nollett, K. M. 2006, Nuclear Physics A, 777, 5 10.1016/j.nuclphysa.2005.07.015CrossRefGoogle Scholar
Woosley, S. & Heger, A. 2007, Phys.Rep., 442, 269 10.1016/j.physrep.2007.02.009CrossRefGoogle Scholar
Young, E. D. 2014, Earth and Planetary Science Letters, 392, 16027 10.1016/j.epsl.2014.02.014CrossRefGoogle Scholar
Young, E. D. 2016, ApJ, 826, 6ppCrossRefGoogle Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 67 *
View data table for this chart

* Views captured on Cambridge Core between 13th January 2020 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The birth environment of the solar system constrained by the relative abundances of the solar radionuclides
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The birth environment of the solar system constrained by the relative abundances of the solar radionuclides
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The birth environment of the solar system constrained by the relative abundances of the solar radionuclides
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *