Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-17T14:06:22.708Z Has data issue: false hasContentIssue false

Rigid C*-Tensor Categories and their Realizations as Hilbert C*-Bimodules

Published online by Cambridge University Press:  16 November 2018

Wei Yuan*
Affiliation:
Academy of Mathematics and Systems Science Chinese Academy of Sciences, Beijing 100190, People's Republic of China School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China (wyuan@math.ac.cn)

Abstract

We realize every small rigid C*-tensor category with simple unit object as Hilbert C*-bimodules.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bischoff, M., Kawahigashi, Y., Longo, R. and Rehren, K.-H., Tensor categories and endomorphisms of von Neumann algebras with applications to quantum field theory, Briefs in Mathematical Physics, Volume 3 (Springer, 2015).Google Scholar
2.Blackadar, B., Operator algebras: theory of C*-algebras and von Neumann algebras, Encyclopaedia of Mathematical Sciences, Volume 122 (Springer, 2006).Google Scholar
3.Brothier, A., Hartglass, M. and Penneys, D., Rigid C*-tensor categories of bimodules over interpolated free group factors, J. Math. Phys. 53 (2012), 123525.Google Scholar
4.Davidson, K. R., C*-Algebras by Examples, Fields Institute Monographs, Volume 6, (American Mathematical Society, 1996).Google Scholar
5.Deprez, S. and Vaes, S., A classification of all finite index subfactors for a class of group-measure space II1 factors, J. Noncommut. Geom. 5 (2011), 523545.Google Scholar
6.Doplicher, S. and Roberts, J. E., Endomorphisms of C*-algebras, crossed products and duality for compact groups, Ann. of Math. 130 (1989), 75119.Google Scholar
7.Doplicher, S. and Roberts, J. E., A new duality theory for compact groups, Invent. Math. 98 (1989), 157218.Google Scholar
8.Evans, D. E. and Kawahigashi, Y., Quantum symmetries on operator algebras, Oxford Mathematical Monographs (Oxford University Press, 1998).Google Scholar
9.Falguiéres, S. and Vaes, S., Every compact group arises as the outer automorphism group of a II1 factor, J. Funct. Anal. 254(9) (2008), 23172328.Google Scholar
10.Falguiéres, S., and Vaes, S., The representation category of any compact group is the bimodule category of a II1 factor, J. Reine Angew. Math. 643 (2010), 171199.Google Scholar
11.Falguiéres, S. and Raum, S., Tensor C*-categories arising as bimodule categories of II1 factors, Adv. Math. 237(1) (2013), 331359.Google Scholar
12.Ghez, P., Lima, R. and Roberts, J. E., W*-categories, Pacific J. Math. 120(1) (1985), 79109.Google Scholar
13.Guionnet, A., Jones, V. F. R. and Shlyakhtenko, D., Random matrices, free probability, planar algebras and subfactors, Quanta of maths, Clay Math. Proc. 11 (2010), 201239.Google Scholar
14.Hiai, F. and Izumi, M., Amenability and strong amenability for fusion algebras with applications to subfactor theory, Int. J. Math. 9 (1998), 669722.Google Scholar
15.Hayashi, T. and Yamagami, S., Amenable tensor categories and their realizations as AFD bimodules, J. Funct. Anal. 172 (2000), 1975.Google Scholar
16.Jones, V. F. R., Shlyakhtenko, D. and Walker, K., An orthogonal approach to the subfactor of a planar algebra, Pacific J. Math. 246(1) (2010), 187197.Google Scholar
17.Kadison, R. V. and Ringrose, J. R., Fundamentals of the theory of operator algebras, Vol. II Advanced theory, Graduate Studies in Mathematics, Volume 16 (American Mathematical Society, 1997).Google Scholar
18.Kajiwara, T. and Watatani, Y., Jones index theory by Hilbert C*-bimodules and K-theory, Trans. Amer. Math. Soc. 352(8) (2000), 34293472.Google Scholar
19.Kajiwara, T., Pinzari, C. and Watatani, Y., Jones index theory for Hilbert C*-bimodules and its equivalence with conjugation theory, J. Funct. Anal. 215(1) (2004), 149.Google Scholar
20.Lance, E. C., Hilbert C*-modules A toolkit for operator algebraists, Lecture Note Series, Volume 210 (London Mathematical Society, 1995).Google Scholar
21.Longo, R., Index of subfactors and statistics of quantum fields. II. Correspondences braid group statistics and Jones polynomial, Commun. Math. Phys. 130 (1990), 285309.Google Scholar
22.Longo, R., A duality for Hopf algebras and for subfactors. I, Commun. Math. Phys. 159 (1994), 133150.Google Scholar
23.Longo, R. and Roberts, J. E., A theory of dimension, K-Theory 11 (1997), 103159.Google Scholar
24.Longo, R. and Xu, F., Topological sectors and a dichotomy in conformal field theory, Commun. Math. Phys. 251 (2004), 321364.Google Scholar
25.Mac Lane, S., Categories for the working mathematician (Springer-Verlag, Berlin, Heidelberg, New York, 1971).Google Scholar
26.Neshveyev, S. and Yamashita, M., Drinfeld center and representation theory for monoidal categories, Commun. Math. Phys. 345 (2016), 385434.Google Scholar
27.Neshveyev, S. and Yamashita, M., Poisson boundaries of monoidal categories, Volume 4, Annales Scientifiques de l'ENS 50, Fascicule (2017), 927972.Google Scholar
28.Pinzari, C. and Roberts, J. E., A duality theorem for ergodic actions of compact quantum groups on C*-algebras, Commun. Math. Phys. 277 (2008), 385421.Google Scholar
29.Pinzari, C. and Roberts, J. E., A theory of induction and classification of tensor C*-categories, J. Noncommut. Geom. 6 (2012), 665719.Google Scholar
30.Pinzari, C. and Roberts, J. E., Ergodic actions of compact quantum groups from solutions of the conjugate equations, Kyoto J. Math. 57(3) (2017), 519552.Google Scholar
31.Popa, S., Correspondence, preprint.Google Scholar
32.Popa, S., Classification of amenable subfactors of type II, Acta Math. 172 (1994), 163255.Google Scholar
33.Rieffel, M. A., Morita equivalence for operator algebras, in Proceedings of Symposia in Pure Mathematics, Volume 38 (AMS, 1982).Google Scholar
34.Sunder, V. S., II1-factor their bimodules and hypergroups, Trans. Amer. Math. Soc. 330 (1992), 227256.Google Scholar
35.Vaes, S., Explicit computations of all finite index bimodules for a family of II1 factors, Ann. Sci. Éc. Norm. Supér. 41(5) (2008), 743788.Google Scholar
36.Woronowicz, S. L., Tannaka–Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93 (1988), 3576.Google Scholar
37.Yamagami, S., C*-tensor categories and free product bimodules, J. Funct. Anal. 197 (2003), 323346.Google Scholar
38.Yamagami, S., Frobenius duality in C*-tensor categories, J. Operator Theory 52 (2004), 320.Google Scholar