No CrossRef data available.
Published online by Cambridge University Press: 20 January 2009
The question to be discussed is this:—
Can Aronhold's theorems on the bitangents of a quartic curve of genus three be extended to the tritangent planes of a space seztic of genus four?
The answer is “No”: decisiveness arises from the fact that the gist of Aronhold's results can be stated in a very simple form, namely:—
(a) Given seven lines in a plane it is possible to derive from them uniquely and symmetrically a quartic curve that has them for bitangents.