Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T16:15:21.535Z Has data issue: false hasContentIssue false

Polynomial stability of a piezoelectric beam with magnetic effect and a boundary dissipation of the fractional derivative type

Published online by Cambridge University Press:  05 April 2023

Verónica Poblete
Affiliation:
Departamento de Matemáticas, Universidad de Chile, Santiago, Región Metropolitana 832 0000 Chile (vpoblete@uchile.cl)
Fernando Toledo
Affiliation:
Departamento de Ciencias Básicas, Universidad del Bío-Bío, Concepción Región del Biobío 334 9001 Chile (ftoledo@ubiobio.cl)
Octavio Vera
Affiliation:
Departamento de Matemática, Universidad de Tarapacá, Arica, Región de Arica y Parinacota 100 0000 Chile (opverav@academicos.uta.cl)

Abstract

This work studies the asymptotic behavior of a waves coupled system with a boundary dissipation of the fractional derivative type. We prove well-posedness and polynomial stability based on the semigroup approach, the energy method, and the result of stability.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achori, N., Eddine, Z. and Benaissa, A., The Euler–Bernoulli beam equation with boundary dissipation of fractional derivative type, 40(11) (2017), 38373854.Google Scholar
Arendt, W. and Batty, C. J. K., Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306(2) (1988), 837852.10.1090/S0002-9947-1988-0933321-3CrossRefGoogle Scholar
Benaissa, A. and Abderrahmane, K., Well-posedness and energy decay of solutions to a Bresse system with a boundary dissipation of fractional derivative type, Discrete Contin. Dyn. Syst. Ser. B. 23(10) (2018), 43614395.Google Scholar
Borichev, A. and Tomilov, Y., Optimal polynomial decay of functions and operator semigroups, Math. Ann. 347(2) (2010), 455478.10.1007/s00208-009-0439-0CrossRefGoogle Scholar
Caputo, M., Linear models of dissipation whose Q is almost frequency independent Part II, Geophys. J. Int. 13(5) (1967), 529539.10.1111/j.1365-246X.1967.tb02303.xCrossRefGoogle Scholar
Choi, J. and Maccamy, R., Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl. 139 (1989), 448464.10.1016/0022-247X(89)90120-0CrossRefGoogle Scholar
Kilbas, A. A. and Trujillo, J. J., Differential equation of Fractional order: methods, results and Problems. II, Appl. Anal. 81(1–2) (2001), 153192.10.1080/00036810108840931CrossRefGoogle Scholar
Kilbas, A. A. and Trujillo, J. J., Differential equation of Fractional order: methods, results and Problems. I, Appl. Anal. 78(2) (2002), 435493.10.1080/0003681021000022032CrossRefGoogle Scholar
Kilbas, A., Srivastava, H. and Trujillo, J., Theory and applications of fractional differential equations, in North-Holland mathematics studies, (ed. van Mill, J.), Volume 204, (Elsevier Science B.V, Amsterdam, 2006).Google Scholar
Kong, A., Nonato, C., Liu, W., Santos, M. J. d., and Raposo, C., A equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights, Discrete Contin. Dyn. Syst. Ser. B. 2021 (2021), 120.Google Scholar
Mbodje, B., Wave energy decay under fractional derivative controls, IMA J. Math. Control. Inform. 23 (2006), 237257.10.1093/imamci/dni056CrossRefGoogle Scholar
Mbodje, B. and Montseny, G., Boundary fractional derivative control of the wave equation, IEEE Trans. Automat. Control 40 (1995), 368382.10.1109/9.341815CrossRefGoogle Scholar
Morris, K. A., and Özer, A. Ö., Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects SIAM J. Control Optim. 52(4) (2014), 23712398.10.1137/130918319CrossRefGoogle Scholar
Ramos, A. J. A., Freitas, M. M. and Almeida, D. S., Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect, Z. Angew. Math. Phys. 70(60) (2019), 114.10.1007/s00033-019-1106-2CrossRefGoogle Scholar
Ramos, A. J. A., Gonçalves, C. S. C. and Correa Neto, S. S., Exponential stability and numerical treatment for piezoelectric beams with magnetic effect, ESAIM Math. Model. Numer. Anal. 52(1) (2018), 255274.10.1051/m2an/2018004CrossRefGoogle Scholar
Samko, S., Kilbas, A. and Marichev, O., Integral and derivatives of fractional order (Gordon Breach, New York, 1993).Google Scholar
Yang, J., An Introduction to the theory of piezoelectric, 2nd edn. Advances in Mechanics and Mathematics 9. (Springer, Boston, MA, 2005).Google Scholar
Yang, J., A review of a few topics in piezoelectricity, Appl. Mech. Rev. 59 (2006), 335345.10.1115/1.2345378CrossRefGoogle Scholar