Skip to main content Accessibility help
×
Home

On the notions of upper and lower density

  • Paolo Leonetti (a1) and Salvatore Tringali (a2)

Abstract

Let $\mathcal {P}(\mathbf{N})$ be the power set of N. We say that a function $\mu ^\ast : \mathcal {P}(\mathbf{N}) \to \mathbf{R}$ is an upper density if, for all X, Y ⊆ N and h, k ∈ N+, the following hold: (f1) $\mu ^\ast (\mathbf{N}) = 1$ ; (f2) $\mu ^\ast (X) \le \mu ^\ast (Y)$ if X ⊆ Y; (f3) $\mu ^\ast (X \cup Y) \le \mu ^\ast (X) + \mu ^\ast (Y)$ ; (f4) $\mu ^\ast (k\cdot X) = ({1}/{k}) \mu ^\ast (X)$ , where k · X : = {kx: x ∈ X}; and (f5) $\mu ^\ast (X + h) = \mu ^\ast (X)$ . We show that the upper asymptotic, upper logarithmic, upper Banach, upper Buck, upper Pólya and upper analytic densities, together with all upper α-densities (with α a real parameter ≥ −1), are upper densities in the sense of our definition. Moreover, we establish the mutual independence of axioms (f1)–(f5), and we investigate various properties of upper densities (and related functions) under the assumption that (f2) is replaced by the weaker condition that $\mu ^\ast (X)\le 1$ for every X ⊆ N. Overall, this allows us to extend and generalize results so far independently derived for some of the classical upper densities mentioned above, thus introducing a certain amount of unification into the theory.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On the notions of upper and lower density
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On the notions of upper and lower density
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On the notions of upper and lower density
      Available formats
      ×

Copyright

Footnotes

Hide All
*

Current address: Institute of Analysis and Number Theory, Graz University of Technology, Kopernikusgasse 24/II, 8010 Graz, Austria.

Current address: College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, Hebei Province 050000, China.

Footnotes

References

Hide All
1.Alexander, R., Density and multiplicative structure of sets of integers, Acta Arith. 12 (1967), 321332.
2.Blass, A., Frankiewicz, R., Plebanek, G. and Ryll-Nardzewski, C., A note on extensions of asymptotic density, Proc. Amer. Math. Soc. 129(11) (2001), 33133320.
3.Buck, R. C., The measure theoretic approach to density, Amer. J. Math. 68(4) (1946), 560580.
4.Buck, R. C., Generalized asymptotic density, Amer. J. Math. 75(2) (1953), 335346.
5.Di Nasso, M., Fine asymptotic densities for sets of natural numbers, Proc. Amer. Math. Soc. 138 (8) (2010), 26572665.
6.Di Nasso, M. and Jin, R., Abstract density and ideal of sets, Acta Arith. 185(4) (2018), 301313.
7.Freedman, A. R. and Sember, J. J., Densities and summability, Pacific J. Math. 95(2) (1981), 293305.
8.Fuchs, A. and Giuliano Antonini, R., Théorie générale des densités, Rend. Accad. Naz. Sci. XL Mem. Mat. 14(1) (1990), 253294.
9.Gáliková, Z., László, B. and Šalát, T., Remarks on uniform density of sets of integers, Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002), 313.
10.Giuliano Antonini, R. and Grekos, G., Comparison between lower and upper α-densities and lower and upper α-analytic densities, Unif. Distrib. Theory 3(2) (2008), 2135.
11.Grätzer, G., Lattice theory foundation (Birkhäuser, Basel, 2011).
12.Green, B. and Tao, T., The primes contain arbitrarily long arithmetic progressions, Ann. of Math. 167(2) (2008), 481547.
13.Grekos, G., Sur la répartition des densités des sous-suites d'une suite d'entiers. PhD thesis, Université Pierre et Marie Curie, 1976 (in French).
14.Grekos, G., Répartition des densités des sous-suites d'une suite d'entiers, J. Number Theory 10(2) (1978), 177191 (in French).
15.Grekos, G., On various definitions of density (survey), Tatra Mt. Math. Publ. 31 (2005), 1727.
16.Grekos, G., Mišík, L. and Tóth, J. T., Density sets of sets of positive integers, J. Number Theory 130(6) (2010), 13991407.
17.Grekos, G., Toma, V. and Tomanová, J., A note on uniform or Banach density, Ann. Math. Blaise Pascal 17(1) (2010), 153163.
18.Halberstam, H. and Roth, K. F., Sequences, revised edn (Springer-Verlag, Berlin, 1983).
19.Leonetti, P., Thinnable ideals and invariance of cluster points, Rocky Mountain J. Math. 48(6) (2018), 19511961.
20.Leonetti, P. and Tringali, S., Upper and lower densities have the strong Darboux property, J. Number Theory 174 (2017), 445455.
21.Letavaj, P., Mišík, L. and Sleziak, M., Extreme points of the set of density measures, J. Math. Anal. Appl. 423(2) (2015), 11501165.
22.Levinson, N., Gap and density theorems, Volume 26 (American Mathematical Society Colloquium Publications, New York, 1940).
23.Liapounoff, A. A., Sur les fonctions-vecteurs complètement additives, Izv. Akad. Nauk SSSR Ser. Mat. 4(6) (1940), 465478.
24.Luca, F., Porubský, Š., On asymptotic and logarithmic densities, Tatra Mt. Math. Publ. 31 (2005), 7586.
25.Maharam, D., Finitely additive measures on the integers, Sankhyā Ser. A 38(1) (1976), 4459.
26.Marinacci, M., An axiomatic approach to complete patience and time invariance, J. Econom. Theory 83(1) (1998), 105144.
27.Mekler, A. H., Finitely additive measures on N and the additive property, Proc. Amer. Math. Soc. 92(3) (1984), 439444.
28.Niven, I., The asymptotic density of sequences, Bull. Amer. Math. Soc. 57(6) (1951), 420434.
29.Niven, I., Zuckerman, H. S. and Montgomery, H. L., An introduction to the theory of numbers, 5th edn (Wiley, 1991).
30.Paštéka, M., Some properties of Buck's measure density, Math. Slovaca 42(1) (1992), 1532.
31.Paštéka, M. and Šalát, T., Buck's measure density and sets of positive integers containing arithmetic progression, Math. Slovaca 41(3) (1991), 283293.
32.Pincus, D., The strength of the Hahn-Banach theorem, in Victoria symposium on nonstandard analysis, Lecture Notes in Mathematics (eds Hurd, A. E. and Loeb, P.), Volume 369, pp. 203248 (Springer, Berlin, 1974).
33.Pólya, G., Untersuchungen über Lücken und Singularitäten von Potenzreihen, Math. Zeit., 29 (1929), 549640.
34.Roth, K. F., Sur quelques ensembles d'entiers, C. R. Acad. Sci. Paris 234 (1952), 388390.
35.Roth, K. F., On certain sets of integers, J. Lond. Math. Soc. 28 (1953), 104109.
36.Šalát, T. and Tijdeman, R., Asymptotic densities of sets of positive integers, Math. Slovaca, 33(2) (1983), 199207.
37.Schechter, E., Handbook of analysis and its foundations (Academic Press, 1996).
38.Sierpiński, W., Elementary theory of numbers, 2nd edn, North-Holland Mathematical Library, Volume 31 (North-Holland, Amsterdam, 1988).
39.Sleziak, M. and Ziman, M., Lévy group and density measures, J. Number Theory 128(12) (2008), 30053012.
40.Soifer, A., The mathematical coloring book (Springer-Verlag, New York, 2009).
41.Szemerédi, E., On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199245.
42.Tenenbaum, G., Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, Volume 46 (Cambridge University Press, Cambridge, 1995).
43.van Douwen, E. K., Finitely additive measures on ℕ, Topology Appl. 47(3) (1992), 223268.

Keywords

MSC classification

On the notions of upper and lower density

  • Paolo Leonetti (a1) and Salvatore Tringali (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed