Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-v5sh4 Total loading time: 0.252 Render date: 2021-04-12T17:17:49.644Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

ON ISOMETRIC MINIMAL IMMERSIONS FROM WARPED PRODUCTS INTO REAL SPACE FORMS

Published online by Cambridge University Press:  14 October 2002

Bang-Yen Chen
Affiliation:
Department of Mathematics, Michigan State University, East Lansing, MI 48824-1027, USA (bychen@math.msu.edu)
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

We establish a general sharp inequality for warped products in real space form. As applications, we show that if the warping function $f$ of a warped product $N_1\times_fN_2$ is a harmonic function, then

(1) every isometric minimal immersion of $N_1\times_fN_2$ into a Euclidean space is locally a warped-product immersion, and

(2) there are no isometric minimal immersions from $N_1\times_f N_2$ into hyperbolic spaces.

Moreover, we prove that if either $N_1$ is compact or the warping function $f$ is an eigenfunction of the Laplacian with positive eigenvalue, then $N_1\times_f N_2$ admits no isometric minimal immersion into a Euclidean space or a hyperbolic space for any codimension. We also provide examples to show that our results are sharp.

AMS 2000 Mathematics subject classification: Primary 53C40; 53C42; 53B25

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2002

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 291 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 12th April 2021. This data will be updated every 24 hours.

Access Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ON ISOMETRIC MINIMAL IMMERSIONS FROM WARPED PRODUCTS INTO REAL SPACE FORMS
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

ON ISOMETRIC MINIMAL IMMERSIONS FROM WARPED PRODUCTS INTO REAL SPACE FORMS
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

ON ISOMETRIC MINIMAL IMMERSIONS FROM WARPED PRODUCTS INTO REAL SPACE FORMS
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *