Skip to main content Accessibility help
×
Home

A Note on the Fundamental Group of Kodaira Fibrations

  • Stefano Vidussi (a1)

Abstract

The fundamental group π of a Kodaira fibration is, by definition, the extension of a surface group $\Pi_b$ by another surface group $\Pi _g$ , i.e.

$$1 \rightarrow \Pi_g \rightarrow \pi \rightarrow \Pi_b \rightarrow 1.$$
Conversely, Catanese (2017) inquires about what conditions need to be satisfied by a group of that sort in order to be the fundamental group of a Kodaira fibration. In this short note we collect some restrictions on the image of the classifying map $m \colon \Pi_b \to \Gamma_g$ in terms of the coinvariant homology of $\Pi_g$ . In particular, we observe that if π is the fundamental group of a Kodaira fibration with relative irregularity gs, then $g \leq 1+ 6s$ , and we show that this effectively constrains the possible choices for π, namely that there are group extensions as above that fail to satisfy this bound, hence it cannot be the fundamental group of a Kodaira fibration. A noteworthy consequence of this construction is that it provides examples of symplectic 4-manifolds that fail to admit a Kähler structure for reasons that eschew the usual obstructions.

Copyright

References

Hide All
1Arapura, D., Toward the structure of fibered fundamental groups of projective varieties, J. Éc. polytech. Math. 4 (2017), 595611.
2Barja, M. Á., González–Alonso, V. and Naranjo, J. C., Xiao's conjecture for general fibred surfaces, J. Reine Angew. Math. 739 (2018), 297308.
3Barth, W., Hulek, K., Peters, C. and Van de Ven, A., Compact complex surfaces, 2nd edn, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Volume 4 (Springer-Verlag, Berlin, 2004).
4Baykur, R. İ., Non-holomorphic surface bundles and Lefschetz fibrations, Math. Res. Lett. 19 (2012), 567574.
5Baykur, R. İ. and Margalit, D., Indecomposable surface bundles over surfaces, J. Topol. Anal. 5 (2013), 161181.
6Beauville, A., L'inégalité $p_g \geq 2q-4$ pour les surfaces de type général, Appendix to O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France 110(3) (1982), 319346.
7Catanese, F., Kodaira fibrations and beyond: methods for moduli theory, Jpn. J. Math. 12(2) (2017), 91174.
8Endo, H., Korkmaz, M., Kotschick, D., Ozbagci, B. and Stipsicz, A., Commutators, Lefschetz fibrations and the signatures of surface bundles, Topology 41 (2002), 961977.
9Flapan, L., Monodromy of Kodaira fibrations of genus 3, preprint (arXiv:1709.03164, 2017).
10Hillman, J., Complex surfaces which are fibre bundle, Topology Appl. 100 (2000), 187191.
11Hillman, J., Sections of surface bundles, in Interactions between low-dimensional topology and mapping class groups (ed. Inanc Baykur, R., Etnyre, John and Hamenstädt, Ursula), pp. 120, Geometry and Topology Monographs, Volume 19 (Mathematical Sciences, 2015).
12Johnson, F. E. A., A class of non-Kählerian manifolds, Math. Proc. Cambridge Philos. Soc. 100(3) (1986), 519521.
13Kotschick, D., On regularly fibered complex surfaces, in Proceedings of the Kirbyfest (Berkeley, CA, 1998) (ed. Hass, Joel and Scharlemann, Martin), pp. 291298, Geometry and Topology Monographs, Volume 2 (Mathematical Sciences, 1999).
14Liu, K., Geometric height inequalities, Math. Res. Lett. 3 (1996), 693702.
15Rolfsen, D., Knots and links, corrected reprint of the 1976 original, Mathematics Lecture Series, Volume 7 (Publish or Perish, Houston, TX, 1990), xiv+439 pp.
16Thurston, W., Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55(2) (1976), 467468.
17Wall, C. T. C. (ed.) List of problems, in Homological group theory (Proc. Sympos., Durham, 1977), London Mathematical Society Lecture Note Series,Volume 36 (Cambridge University Press, 1979).
18Xiao, G., Fibred algebraic surfaces with low slope, Math. Ann. 276 (1987), 449466.

Keywords

MSC classification

A Note on the Fundamental Group of Kodaira Fibrations

  • Stefano Vidussi (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed