Skip to main content Accessibility help
×
Home

Iterating Bilinear Hardy Inequalities

  • Martin Křepela (a1) (a2)

Abstract

An iteration technique for characterizing boundedness of certain types of multilinear operators is presented, reducing the problem to a corresponding linear-operator case. The method gives a simple proof of a characterization of validity of the weighted bilinear Hardy inequality

for all non-negative f, g on (a, b), for 1 < p 1, p 2, q < ∞. More equivalent characterizing conditions are presented.

The same technique is applied to various further problems, in particular those involving multilinear integral operators of Hardy type.

Copyright

References

Hide All
1. Aguilar Cañestro, M. I., Ortega Salvador, P. and Ramírez Torreblanca, C., Weighted bilinear Hardy inequalities, J. Math. Analysis Applic. 387(1) (2012), 320334.
2. Bennett, C. and Sharpley, R., Interpolation of operators, Pure and Applied Mathematics, Volume 129 (Academic Press, 1988).
3. Bradley, J., Hardy inequalities with mixed norms, Can. Math. Bull. 21(4) (1978), 405408.
4. Carro, M., Pick, L., Soria, J. and Stepanov, V. D., On embeddings between classical Lorentz spaces, Math. Inequal. Applic. 4 (2001), 397428.
5. Gogatishvili, A. and Stepanov, V. D., Reduction theorems for operators on the cones of monotone functions, J. Math. Analysis Applic. 405 (2013), 156172.
6. Gogatishvili, A., Johansson, M., Okpoti, C. A. and Persson, L.-E., Characterisation of embeddings in Lorentz spaces, Bull. Austral. Math. Soc. 76(1) (2007), 6992.
7. Gogatishvili, A., Kufner, A. and Persson, L.-E., Some new scales of weight characterizations of the class Bp , Acta Math. Hungar. 123 (2009), 365377.
8. Gogatishvili, A., Persson, L.-E., Stepanov, V. D. and Wall, P., Some scales of equivalent conditions to characterize the Stieltjes inequality: the case q < p , Math. Nachr. 287 (2014), 242253.
9. Křepela, M., Convolution inequalities in weighted Lorentz spaces, Math. Inequal. Applic. 17(4) (2014), 12011223.
10. Křepela, M., Convolution in rearrangement-invariant spaces defined in terms of oscillation and the maximal function, Z. Analysis Anwend. 33(4) (2014), 369383.
11. Křepela, M., Convolution in weighted Lorentz spaces of type Γ , Math. Scand. 119(1) (2016), DOI: 10.7146/math.scand.a-24187.
12. Křepela, M., Bilinear weighted Hardy inequality for nonincreasing functions, Publ. Mat., 61(1) (2017), 350.
13. Kufner, A. and Persson, L.-E., Weighted inequalities of Hardy type (World Scientific, 2003).
14. Maz’ja, V. G., Sobolev spaces (Springer, 1985).
15. Muckenhoupt, B., Hardy's inequality with weights, Studia Math. 44 (1972), 3138.
16. O’Neil, R., Convolution operators and L(p, q) spaces, Duke Math. J. 30 (1963), 129142.
17. Stepanov, V. D., The weighted Hardy's inequality for nonincreasing functions, Trans. Am. Math. Soc. 338 (1993), 173186.
18. Yap, L. Y. H., Some remarks on convolution operators and L(p, q) spaces, Duke Math. J. 36 (1969), 647658.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed