Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T16:08:59.841Z Has data issue: false hasContentIssue false

Gelfand-Kirillov dimension of multi-filtered algebras

Published online by Cambridge University Press:  20 January 2009

José Gómez Torrecillas
Affiliation:
Dept. Algebra Facultad de Ciencias, Universidad de Granada, E–18071 Granada, Spain, E-mail address: torrecil@ugr.es
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider associative algebras filtered by the additive monoid ℕp. We prove that, under quite general conditions, the study of Gelfand-Kirillov dimension of modules over a multi-filtered algebra R can be reduced to the associated ℕp-graded algebra G(R). As a consequence, we show the exactness of the Gelfand-Kirillov dimension when the multi-filtration is finite-dimensional and G(R) is a finitely generated noetherian algebra. Our methods apply to examples like iterated Ore extensions with arbitrary derivations and “homothetic” automorphisms (e.g. quantum matrices, quantum Weyl algebras) and the quantum enveloping algebra of sl(v + 1)

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1999

References

REFERENCES

1.Artin, M., Schelter, W. and Tate, J., Quantum deformations of GL n, Comm. Pure Appl. Math. 44 (1991), 879895.CrossRefGoogle Scholar
2.Becker, T. and Weispfenning, V., Gröbner basis. A computational approach to commutative algebra (Springer, New York, 1993).Google Scholar
3.Bueso, J. L., Castro, F. J., Gómez Torrecillas, J. and Lobillo, F. J., An introduction to effective calculus in quantum groups, in Rings, Hopf algebras and Brauer groups (Caenepeel, S. and Verschoren, A., eds., Marcel Dekker, 1998), 5583.Google Scholar
4.De Concini, C. and Procesi, C., Quantum groups, in D-Modules, Representation Theory and Quantum Groups (Zampieri, G. and D'agnolo, A., eds., Lecture Notes in Math., 1565, Springer, 1993), 31140.CrossRefGoogle Scholar
5.Goodearl, K. R. and Lenagan, T. H., Catenarity in quantum algebras, J. Pure Appl. Algebra 111 (1996), 123142.CrossRefGoogle Scholar
6.Joseph, A., Quantum groups and their primitive ideals (Springer, New York, 1995).CrossRefGoogle Scholar
7.Kandri-Rody, A. and Weispfenning, V., Non-Commutative Gröbner basis in algebras of solvable type, J. Symbolic Comput. 9 (1990), 126.Google Scholar
8.Krause, G. R. and Lenagan, T. H., Growth of algebras and Gelfand-Kirillov dimension (Research Notes in Mathematics, 116, Pitman Pub. Inc., London, 1985).Google Scholar
9.Lorenz, M., Gelfand-Kirillov dimension and Poincaré series (Cuadernos de Algebra, 7, Universidad de Granada, 1988).Google Scholar
10.Lusztig, G., Canonical bases arising from quantized enveloping algebras, J Amer. Math. Soc. 3 (1990), 447498.Google Scholar
11.Maltsiniotis, G., Calcul difféntiel quantique (Université de Paris, VII, 1992).Google Scholar
12.McConnell, J. C., Quantum groups, filtered rings and Gelfand-Kirillov dimension, in Noncommutative Ring Theory (Lecture Notes in Math., 1448, Springer, 1990), 139149.CrossRefGoogle Scholar
13.McConnell, J. C. and Robson, J. C., Noncommutative Noetherian Rings (J. Wiley and Sons, Chichester-New York, 1988).Google Scholar
14.McConnell, J. C. and Stafford, J. T., Gelfand-Kirillov dimension and associated graded modules, J. Algebra 125 (1989), 179214.Google Scholar
15.Mora, T., Seven variations on standard bases (Univ. Genova, 1988), preprint.Google Scholar
16.Robbiano, L., On the theory of graded structures, J. Symbolic Comput. 2 (1986), 139170.Google Scholar
17.Sigurdsson, G., Ideals in universal enveloping algebras of solvable lie algebras, Comm. Algebra 15 (1987), 813826.Google Scholar
18.Yamane, H., A Poincaré-Birkhoff-Witt Theorem for quantized enveloping algebra of type A N, Publ. RIMS. Kyoto Univ. 25 (1989), 503520.Google Scholar