Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-19T03:22:50.808Z Has data issue: false hasContentIssue false

A Few Remarks on the Tube Algebra of a Monoidal Category

Published online by Cambridge University Press:  08 May 2018

Sergey Neshveyev
Affiliation:
Department of Mathematics, University of Oslo, PO Box 1053 Blindern, NO-0316 Oslo, Norway (sergeyn@math.uio.no)
Makoto Yamashita*
Affiliation:
Department of Mathematics, Ochanomizu University, Otsuka 2-1-1, Bunkyo, 112-8610 Tokyo, Japan (yamashita.makoto@ocha.ac.jp)
*
*Corresponding author.

Abstract

We prove two results on the tube algebras of rigid C*-tensor categories. The first is that the tube algebra of the representation category of a compact quantum group G is a full corner of the Drinfeld double of G. As an application, we obtain some information on the structure of the tube algebras of the Temperley–Lieb categories 𝒯ℒ(d) for d > 2. The second result is that the tube algebras of weakly Morita equivalent C*-tensor categories are strongly Morita equivalent. The corresponding linking algebra is described as the tube algebra of the 2-category defining the Morita context.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Arano, Y., Unitary spherical representations of Drinfeld doubles, to appear in J. Reine Angew. Math. (2014), Preprint (arXiv:1410.6238), DOI:10.1515/crelle-2015-0079.Google Scholar
2.Bischoff, M., Kawahigashi, Y., Longo, R. and Rehren, K.-H., Tensor categories and endomorphisms of von Neumann algebras—with applications to quantum field theory, Springer Briefs in Mathematical Physics Volume 3 (Springer, Cham, 2015).Google Scholar
3.Brothier, A. and Jones, V. F. R., Hilbert modules over a planar algebra and the Haagerup property, J. Funct. Anal. 269(11) (2015), 36343644.Google Scholar
4.De Commer, K., Freslon, A. and Yamashita, M., CCAP for universal discrete quantum groups, Comm. Math. Phys. 331(2) (2014), 677701.CrossRefGoogle Scholar
5.Evans, D. E. and Kawahigashi, Y., On Ocneanu's theory of asymptotic inclusions for subfactors, topological quantum field theories and quantum doubles, Internat. J. Math. 6(2) (1995), 205228.Google Scholar
6.Ghosh, S. K. and Jones, C., Annular representation theory for rigid C*-tensor categories, J. Funct. Anal. 270(4) (2016), 15371584.CrossRefGoogle Scholar
7.Izumi, M., The structure of sectors associated with Longo–Rehren inclusions. I. General theory, Comm. Math. Phys. 213(1) (2000), 127179.Google Scholar
8.Jones, C., Quantum G2 categories have property (T), Internat. J. Math. 27(2) (2016), 16500154.Google Scholar
9.Jones, V. F. R., The annular structure of subfactors, In Essays on Geometry and Related Topics, Volume 1, 2 (ed. Ghys, E., de la Harpe, P., Jones, V.F.R., Sergiescu, V. and Tsuboi, T.), pp. 401463 (Enseignement Math., Geneva, 2001).Google Scholar
10.Jones, V. F. R. and Reznikoff, S. A., Hilbert space representations of the annular Temperley–Lieb algebra, Pacific J. Math. 228(2) (2006), 219249.Google Scholar
11.Kustermans, J., Universal C*-algebraic quantum groups arising from algebraic quantum groups, Preprint (arXiv:funct-an/9704006; 1997).Google Scholar
12.Longo, R. and Rehren, K.-H., Nets of subfactors, Rev. Math. Phys. 7(4) (1995), 567597.Google Scholar
13.Longo, R. and Roberts, J. E., A theory of dimension, K-Theory 11(2) (1997), 103159.CrossRefGoogle Scholar
14.Mac Lane, S. Categories for the working mathematician, 2nd edition, Graduate Texts in Mathematics, Volume 5 (Springer-Verlag, New York, 1998).Google Scholar
15.Masuda, T., An analogue of Longo's canonical endomorphism for bimodule theory and its application to asymptotic inclusions, Internat. J. Math. 8(2) (1997), 249265.Google Scholar
16.Meir, E. and Szymik, M., Drinfeld centres for bicategories, Doc. Math. 20 (2015), 707735.Google Scholar
17.Müger, M., From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories, J. Pure Appl. Algebra 180(1–2) (2003), 81157.Google Scholar
18.Müger, M., From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra 180(1–2) (2003), 159219.Google Scholar
19.Neshveyev, S. and Tuset, L., Compact Quantum Groups and their Representation Categories. Cours Spécialisés (Specialized Courses), Volume 20 (Société Mathématique de France, Paris, 2013).Google Scholar
20.Neshveyev, S. and Yamashita, M., Drinfeld centre and representation theory for monoidal categories, Comm. Math. Phys. 345(1) (2016), 385434.Google Scholar
21.Podleś, P. and Woronowicz, S. L., Quantum deformation of Lorentz group, Comm. Math. Phys. 130(2) (1990), 381431.Google Scholar
22.Popa, S., Symmetric enveloping algebras, amenability and AFD properties for subfactors, Math. Res. Lett. 1(4) (1994), 409425.Google Scholar
23.Popa, S., Shlyakhtenko, D. and Vaes, S., Cohomology and L 2-Betti numbers for subfactors and quasi-regular inclusions, Internat. Math. Res. Notices (2017), in press.Google Scholar
24.Popa, S. and Vaes, S., Representation theory for subfactors, λ-lattices and C*-tensor categories, Comm. Math. Phys. 340(3) (2015), 12391280.Google Scholar
25.Pusz, W., Irreducible unitary representations of quantum Lorentz group, Comm. Math. Phys. 152(3) (1993), 591626.Google Scholar
26.Pusz, W. and Woronowicz, S. L., Representations of quantum Lorentz group on Gelfand spaces, Rev. Math. Phys. 12(12) (2000), 15511625.Google Scholar
27.Rieffel, M. A., Morita equivalence for C*-algebras and W*-algebras, J. Pure Appl. Algebra 5 (1974), 5196.Google Scholar
28.Schauenburg, P., The monoidal centre construction and bimodules, J. Pure Appl. Algebra 158(2–3) (2001), 325346.Google Scholar
29.Shimizu, K., The Monoidal centre and the character algebra, J. Pure Appl. Algebra 221(9) (2017), 23382371.Google Scholar
30.Voigt, C., The Baum–Connes conjecture for free orthogonal quantum groups, Adv. Math. 227(5) (2011), 18731913.Google Scholar
31.Yamagami, S., Frobenius reciprocity in tensor categories, Math. Scand. 90(1) (2002), 3556.Google Scholar
32.Yamagami, S., Frobenius algebras in tensor categories and bimodule extensions, In Galois theory, Hopf algebras, and semiabelian categories (ed. Janelidze, G., Pareigis, B. and Tholen, W.), pp. 551570, Fields Institute Communications, Volume 43 (American Mathematical Society, Providence, RI, 2004).Google Scholar