1. Introduction
In the paper [Reference Andruskiewitsch, Angiono and Heckenberger1] we stated the classification of the pointed Hopf algebras with finite Gelfand-Kirillov dimension that are liftings of either the Jordan plane or the super Jordan plane over a nilpotent-by-finite group. But we overlooked one possibility, namely to deform degree one relations and therefore the classification in loc. cit. of liftings of Jordan planes is not complete. Here we fill the gap. It turns out that the missed example is essentially a Hopf algebra introduced by C. Ohn in 1992, see [Reference Ohn3].
Throughout ${ \Bbbk }$ is an algebraically closed field of characteristic $0$. Recall that $\mathcal {V}(1,\, 2)$ is the braided vector space with basis $x_1$, $x_2$ and braiding $c$ given by $c(x_i \otimes x_1) = x_1 \otimes x_i$, $c(x_i \otimes x_2) = ( x_1 + x_2) \otimes x_i$, $i = 1,\,2$. Here is the revised version of [Reference Andruskiewitsch, Angiono and Heckenberger1, Proposition 4.2].
Proposition 1 Let $G$ be a nilpotent-by-finite group and let $H$ be a pointed Hopf algebra with finite $\operatorname {GKdim}$ such that
○ $G(H) \simeq G$ and
○ the infinitesimal braiding of $H$ is isomorphic to $\mathcal {V}(1,\, 2)$.
Then there exists a Jordanian YD-triple $\mathcal {D}=(g,\, \chi,\, \eta )$ for $\Bbbk G$ such that either
(I) $H\simeq \mathfrak U(\mathcal {D},\,0)$ or $H\simeq \mathfrak U(\mathcal {D},\,1),$ introduced in [Reference Andruskiewitsch, Angiono and Heckenberger1, §4.1]; or
(II) $\chi =\varepsilon$ and there exists $\xi \in \operatorname {Der}_{\varepsilon,\varepsilon }({ \Bbbk }G,\, { \Bbbk })$, $\xi \ne 0$, such that $H \simeq \mathfrak U_{\xi }(\mathcal {D},\,0)$ or $H\simeq \mathfrak U_{\xi }(\mathcal {D},\,1)$ see Definition 9; or
(III) $\chi =\varepsilon$ and $H\simeq {{\mathfrak U}^{\text {jordan}}}(\mathcal {D}),$ see Definition 11.
Conversely, any of these Hopf algebras is pointed and has finite $\operatorname {GKdim}$, actually $\operatorname {GKdim} \Bbbk G +2$. See Lemmas 10, 12 and [Reference Andruskiewitsch, Angiono and Heckenberger1, Proposition 4.2]. Notice that if $\chi =\varepsilon$ and $\xi = 0$, then $\mathfrak U_{0}(\mathcal {D},\,\lambda ) \simeq \mathfrak U(\mathcal {D},\, \lambda )$, introduced in [Reference Andruskiewitsch, Angiono and Heckenberger1, §4.1].
The subspace of $(g,\,1)$ skew-primitive elements in a Hopf algebra in case (I) is decomposable as $G$-module, while in (II) is decomposable as $\langle g \rangle$-module but it is an indecomposable $G$-module, and in (III) it is an indecomposable $\langle g \rangle$-module. Thus Hopf algebras from different cases could not be isomorphic. Whether Hopf algebras in the same case are isomorphic is treated as in [Reference Andruskiewitsch, Angiono and Heckenberger1, §4.1].
This note is organized as follows. In § 1.1 the minimal Hopf algebra missing in [Reference Andruskiewitsch, Angiono and Heckenberger1, Proposition 4.2] and its relation with [Reference Ohn3] are described. In § 1.2 we discuss the gap. Proposition 1 is proved in § 1.3.
Notation
We keep the notations from [Reference Andruskiewitsch, Angiono and Heckenberger1]. Let $G$ be a group, let ${ \Bbbk }G$ be its group algebra and let $\widehat G$ be its group of characters. Given $\chi \in \widehat G$, recall that
A collection $\mathcal {D}=(g,\, \chi,\, \eta )\in Z(G) \times \widehat G \times \operatorname {Der}_{\chi,\chi }({ \Bbbk }G,\, { \Bbbk })$ is a YD-triple for ${ \Bbbk }G$ if ${\eta (g) = 1}$. Then the vector space $\mathcal {V}_g(\chi,\,\eta )$ with a basis $(x_i)_{i\in \mathbb {I}_2}$ belongs to ${{}^{ { \Bbbk }G }_{ { \Bbbk }G }\mathcal {YD}}$, with the coaction $\delta (x_i) = g\otimes x_i$, $i\in \mathbb {I}_2$, and the action given by
When $\chi (g) = 1$ we say that $\mathcal {D}=(g,\, \chi,\, \eta )$ is a Jordanian YD-triple.
Let $L$ be a Hopf algebra. The $\Delta$, $\varepsilon$ and ${{\mathcal {S}}}$ denote respectively the comultiplication, the counit and the antipode. The group of group-like elements is denoted by $G(L)$. Also the space of $(g,\,h$)-primitive elements is $\mathcal {P}_{g,h}(L) =\{\ell \in L: \Delta (\ell ) = \ell \otimes h + g \otimes \ell \}$, where $g,\,h \in G(L)$, and $\mathcal {P}(L) = \mathcal {P}_{1,1}(L)$ is the space of primitive elements. The adjoint action of $G(L)$ on $L$ is denoted by $g\cdot \ell := g\ell g^{-1}$, $g\in G(L)$, $\ell \in L$.
1.1. The Jordanian enveloping algebra of $s\ell (2)$
Let ${{\widetilde {\mathfrak U}}^{\mathtt {jordan}}}$ be the algebra generated by $a_1,\, a_2,\, g,\, g^{-1}$ with defining relations
It is easy to see that ${{\widetilde {\mathfrak U}}^{\mathtt {jordan}}}$ is a Hopf algebra by imposing $g \in G({{\widetilde {\mathfrak U}}^{\mathtt {jordan}}})$ and $a_1,\,a_2 \in \mathcal {P}_{g, 1}({{\widetilde {\mathfrak U}}^{\mathtt {jordan}}})$. We introduce
Lemma 2 The element $z$ belongs to $\mathcal {P}_{g^{2},1}({{\widetilde {\mathfrak U}}^{\mathtt {jordan}}})$ and commutes with $g$.
Proof. We compute
here $g a_2 - a_2\,g -\dfrac {1}{2} ( a_1\,g + g a_1) + \dfrac {1}{2} g - \dfrac {1}{2} g^{2} = \dfrac {1}{2} (a_1\,g - g a_1 + (g - g^{2})) = 0$.
It remains to prove that $\gamma (z)=0$, where $\gamma \in \operatorname {End}_{{ \Bbbk }}({{\widetilde {\mathfrak U}}^{\mathtt {jordan}}})$ is given by $\gamma (x) = gxg^{-1}-x$, for all $x\in {{\widetilde {\mathfrak U}}^{\mathtt {jordan}}}$. Note that
From (1.1) we have that
Therefore,
By using (1.3) we obtain that
Now it follows easily that $\gamma (z)=0$.
The Jordanian enveloping algebra of $s\ell (2)$ is
By Lemma 2, ${{\mathfrak U}^{\text {jordan}}}$ is a Hopf algebra quotient of ${{\widetilde {\mathfrak U}}^{\mathtt {jordan}}}$. By abuse of notation the images of $g,\, a_1,\, a_2$ in ${{\mathfrak U}^{\text {jordan}}}$ are denoted by the same symbols.
Remark 3 For each $\lambda \in { \Bbbk }$ let
Then ${\mathfrak U}^{\text {jordan}}_{\lambda }$ is a Hopf algebra, since $z-\lambda (1-g^{2})\in \mathcal {P}_{g^{2},1}({{\widetilde {\mathfrak U}}^{\mathtt {jordan}}})$.
Let us now fix $\lambda,\,\mu \in { \Bbbk }$. Let $U$ be the algebra
Then $U$ has a unique Hopf algebra structure such that $g,\,g^{-1}\in G(U)$ and $a_1,\,a_2\in \mathcal {P}_{g,1}(U)$. Moreover, there exists a well-defined Hopf algebra map
It is easily checked that
Moreover, for $z\in U$ defined as in (1.2) we obtain that
Since $z=\lambda (1-g^{2})\in {\mathfrak U}^{\text {jordan}}_{\lambda }$, we conclude that $\varphi _{\lambda,\mu }$ induces a surjective Hopf algebra map
It follows that $\varphi _{0,\lambda }:{\mathfrak U}^{\text {jordan}}_{\lambda }\to {{\mathfrak U}^{\text {jordan}}}$ is a Hopf algebra isomorphism.
Remark 4 For any ${\unicode{x2644}} \in { \Bbbk }$, the Hopf algebra $U_{{\unicode{x2644}} }$ was introduced by Christian Ohn in [Reference Ohn3]; this is the algebra generated over ${ \Bbbk }$ by $K,\,Y,\,T^{\pm 1}$ with relations:
with the Hopf algebra structure of $U_{{\unicode{x2644}} }$ determined by $T\in G(U_{{\unicode{x2644}} })$ and $X,\, Y \in \mathcal {P}_{T^{-1},\, T}(U_{{\unicode{x2644}} })$. It is easy to see that the the Hopf algebras $U_{{\unicode{x2644}} }$ with ${\unicode{x2644}} \neq 0$ are all isomorphic so we fix one of them. The appellative Jordanian was introduced by Alev and Dumas to the best of our knowledge. We claim that ${\mathfrak U}^{\text {jordan}}_{\lambda }$ is isomorphic to the Hopf subalgebra $\mathfrak U$ of $U_{{\unicode{x2644}} }$ generated by
we choose these variables to have $x,\, y \in \mathcal {P}_{g, 1}(\mathfrak U)$. Now (1.6) implies
We perform a new change of variables:
these new variables satisfy (1.1). Now (1.7) translates succesively into
and then into
That is, $\mathfrak U \simeq {\mathfrak U}^{\text {jordan}}_{-\frac {1}{32}}$.
Remark 5 The algebra $U_{{\unicode{x2644}} }$ can be described as an iterated Ore extension:
with $\delta$ a derivation of ${ \Bbbk }[T^{\pm }]$, $\sigma$ an automorphism of ${ \Bbbk }[T^{\pm }][x\,;\delta ]$ and $D$ a $\sigma$-derivation of ${ \Bbbk }[T^{\pm }][x\,;\delta ]$ defined by:
Proposition 6 There exist a derivation $\delta _1$ of $R:=\Bbbk [g,\,g^{-1}]$, a derivation $\delta _2$ of $S:=R[a_1;\operatorname {id},\,\delta _1]$ and an automorphism $\sigma$ of $S$ such that ${{\mathfrak U}^{\text {jordan}}}$ is isomorphic to the Ore extension $S[a_2;\sigma,\,\delta _2]$.
Hence ${{\mathfrak U}^{\text {jordan}}}$ is a noetherian domain of Gelfand-Kirillov 3, and the monomials $g^{j}a_1^{i_1} a_2^{i_2}$ form a PBW-basis of ${{\mathfrak U}^{\text {jordan}}}$.
Proof. We leave the verification of the first claim to the reader as a long but straightforward exercise: the derivations $\delta _1:R\to R$, $\delta _2:S\to S$ satisfy
and $\sigma$ is given by $\sigma (g)=g$, $\sigma (a_1)=a_1+1$. The rest is standard.
Corollary 7 The Hopf algebra ${{\mathfrak U}^{\text {jordan}}}$ is pointed and $\operatorname {gr} {{\mathfrak U}^{\text {jordan}}}$ is isomorphic to the bosonization of the Jordan plane by the group algebra of the infinite cyclic group.
1.2. The gap and how to fix it
We fix a group $G$. Let $H$ be a pointed Hopf algebra with coradical filtration $(H_n)_{n\in \mathbb {N}_0}$ such that $G(H) \simeq G$. Then $H_1/ H_0 \simeq V \# { \Bbbk }G$, where $V \in {{}^{ { \Bbbk }G }_{ { \Bbbk }G }\mathcal {YD}}$ is the infinitesimal braiding of $H$. For $g\in G$, the space of $(g,\,1)$ skew-primitives $\mathcal {P}_{g,1}(H)$ satisfies
Now assume that $V \simeq \mathcal {V}_g(\chi,\,\eta )$ for a YD-triple $\mathcal {D} = (g,\, \chi,\, \eta )$ over ${ \Bbbk }G$. Thus $V = V_g$ and we have an exact sequence of $G$-modules
Since $g\in Z(G)$, one has ${ \Bbbk } (1-g) \subset \mathcal {P}_{g,1}(H)^{\varepsilon }$. Hence $\chi \neq \varepsilon$ implies that
and we have a morphism of Hopf algebras $\pi : \mathcal {T}(\mathcal {V}_g(\chi,\,\eta )) \to H$, where $\mathcal {T}(\mathcal {V}_g(\chi,\,\eta )) = T(\mathcal {V}_g(\chi,\,\eta )) \# { \Bbbk }G$. In particular the proof of [Reference Andruskiewitsch, Angiono and Heckenberger1, Prop. 4.3] goes over without changes.
We assume for the rest of this Section that the infinitesimal braiding $V$ of $H$ is isomorphic to $\mathcal {V}_g(\varepsilon,\,\eta )$ for a YD-triple $\mathcal {D} = (g,\, \varepsilon,\, \eta )$ as Yetter-Drinfeld module over ${ \Bbbk }G$. Under this assumption, $\mathcal {P}_{g,1}(H)$ might be indecomposable.
Example 8 The indecomposability of $\mathcal {P}_{g,1}(H)$ could happen in other situations. Here is a simple example. Let $A$ be the algebra generated by $a,\, \gamma ^{\pm 1}$, where $\gamma ^{-1}$ is the inverse of $\gamma$ and the relation $\gamma a\gamma ^{-1} = a + (1- \gamma )$ holds, so that $A$ is not commutative. Then $A$ is a pointed Hopf algebra by declaring that $\gamma$ is a group-like and $a$ a $(\gamma,\,1)$ skew-primitive element. Observe that $\mathcal {P}_{g,1}(A)$ is indecomposable. Let $\varGamma \simeq \mathbb {Z}$. It can be shown that $\operatorname {gr} A \simeq T(V) \otimes { \Bbbk } \varGamma$, where $V$ has dimension 1 and is the infinitesimal braiding of $A$. But $\mathcal {P}_{g,1}(A)$ is indecomposable and there is no surjective morphism of Hopf algebras $T(V) \otimes { \Bbbk } \varGamma \to A$.
Back to our situation, let us pick $a_1,\, a_2 \in \mathcal {P}_{g,1}(H)$ such that $\varpi (a_j) = x_j$, $j= 1,\,2$ and set $a_0 = 1-g$. Then there are $\zeta \in \operatorname {Der}_{\varepsilon,\varepsilon }({ \Bbbk }G,\, { \Bbbk })$ and a linear map $\xi : { \Bbbk }G \to { \Bbbk }$ such that the action of $h\in G$ on $\mathcal {P}_{g,1}(H)$ is given in the basis $(a_0,\, a_1,\, a_2)$ by
Notice that $\operatorname {Der}_{\varepsilon,\varepsilon }({ \Bbbk }G,\, { \Bbbk }) = \operatorname {Hom}_{\text {gps}}(G,\, ({ \Bbbk },\, +))$ and that $\xi$ is a kind of differential operator of degree 2, meaning that
Thus if $\zeta \neq 0$, then the claim [Reference Andruskiewitsch, Angiono and Heckenberger1, Prop. 4.2, page p. 669, line 8] is not true. To correct this we consider the subalgebra $A$ generated by $g$ and $\mathcal {P}_{g,1}(H)$, a Hopf subalgebra of $H$. The action of $g$ on $\mathcal {P}_{g,1}(H) = \mathcal {P}_{g,1}(A)$ in the basis $(a_0,\, a_1,\, a_2)$ is given by
As $g\in Z(G)$, we have that $\xi (gh) = \xi (hg)$ for all $h\in G$, so (1.15) says that
We consider two cases:
(A) $\zeta (g) = 0$. Then $\zeta =0$ by (1.17) and $\xi \in \operatorname {Der}_{\varepsilon,\varepsilon }({ \Bbbk }G,\, { \Bbbk })$ by (1.15).
(B) $t:= \zeta (g) \neq 0$, the Jordanian case. In the basis $(a_0,\, t^{-1}a_1,\, t^{-1}a_2 - t^{-2}\xi (g) a_1)$, the action of $g$ is given by $\small \begin {pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end {pmatrix}$. We still denote the new basis by $(a_0,\, a_1,\, a_2)$; that is, we may assume that $\zeta (g)=1$, $\xi (g)=0$. By (1.17), $\zeta =\eta$, and by (1.15), $\xi (hk)= \xi (h)+\eta (h)\eta (k) +\xi (k)$ for all $h,\,k\in G$.
We shall see that the following Hopf algebras exhaust the case (A).
Definition 9 Let $\mathcal {D} = (g,\, \varepsilon,\, \eta )$ be a YD-triple, $\xi \in \operatorname {Der}_{\varepsilon,\varepsilon }({ \Bbbk }G,\, { \Bbbk })$ and $\lambda \in \Bbbk$. We define $\mathfrak U_{\xi }(\mathcal {D},\,\lambda )$ as the algebra generated by $h\in G$, $a_1$, $a_2$ with defining relations being those of $G$ and
As we said already, $\mathfrak U_{0}(\mathcal {D},\,\lambda )\simeq \mathfrak U(\mathcal {D},\,\lambda )$, introduced in [Reference Andruskiewitsch, Angiono and Heckenberger1, §4.1].
Lemma 10 $\mathfrak U_{\xi }(\mathcal {D},\,\lambda )$ is a Hopf algebra with comultiplication determined by
Thus $\mathfrak U_{\xi }(\mathcal {D},\,\lambda )$ is pointed. The set $\{a_1^{m} a_2^{n} h \, | \, m,\,n\in \mathbb {N}_0,\, \, h\in G \}$ is a basis of $\mathfrak U_{\xi }(\mathcal {D},\,\lambda )$; $\operatorname {gr} \mathfrak U_{\xi }(\mathcal {D},\,\lambda )\simeq \mathscr {B}(\mathcal {V}(1,\,2))\# { \Bbbk }G$ and
In particular, if $G$ is nilpotent-by-finite, then $\operatorname {GKdim} \mathfrak U_{\xi }(\mathcal {D},\,\lambda ) < \infty$.
Proof. Left to the reader.
We shall see that the following Hopf algebras exhaust the case (B).
Definition 11 Let $\mathcal {D} = (g,\, \varepsilon,\, \eta )$ be a YD-triple and define $\xi \in ({ \Bbbk }G)^{*}$ by $\xi (h) =\tfrac {1}{2}(\eta (h)^{2}-\eta (h))$, $h \in G$. We introduce ${{\mathfrak U}^{\text {jordan}}}(\mathcal {D})$ as the algebra generated by $h\in G$, $a_1$, $a_2$ with defining relations those of $G$, (1.19) and
Observe that $\xi$, needed in (1.19), satisfies (1.15) with $\zeta = \eta$. The proof of the following Lemma is also standard.
Lemma 12 ${{\mathfrak U}^{\text {jordan}}}(\mathcal {D})$ is a Hopf algebra with structure determined by
Thus ${{\mathfrak U}^{\text {jordan}}}(\mathcal {D})$ is pointed. The set $\{a_1^{m} a_2^{n} h \, | \, m,\,n\in \mathbb {N}_0,\, \, h\in G \}$ is a basis of ${{\mathfrak U}^{\text {jordan}}}(\mathcal {D})$; $\operatorname {gr} {{\mathfrak U}^{\text {jordan}}}(\mathcal {D})\simeq \mathscr {B}(\mathcal {V}(1,\,2))\# { \Bbbk }G$ and
In particular, if $G$ is nilpotent-by-finite, then $\operatorname {GKdim} {{\mathfrak U}^{\text {jordan}}}(\mathcal {D}) < \infty$.
1.3. Proof of proposition 1
Let $G$ be a nilpotent-by-finite group and let $H$ be a pointed Hopf algebra with finite $\operatorname {GKdim}$ such that $G(H) \simeq G$ and the infinitesimal braiding $V$ of $H$ is isomorphic to $\mathcal {V}(1,\, 2)$. By [Reference Andruskiewitsch, Angiono and Heckenberger1, Lemma 2.3], there exists a unique YD-triple $\mathcal {D} = (g,\, \chi,\, \eta )$ such that $V \simeq \mathcal {V}_g(\chi,\,\eta )$ in ${{}^{ { \Bbbk }G }_{ { \Bbbk }G }\mathcal {YD}}$. By [Reference Andruskiewitsch, Angiono and Heckenberger1, Lemma 3.7], $\operatorname {gr} H \simeq \mathscr {B}(\mathcal {V}(1,\,2)) \# { \Bbbk }G$, hence $H$ is generated by $\mathcal {P}_{g,1}(H)$ and $G$ as algebra.
If $\chi \neq \varepsilon$, then the proof of [Reference Andruskiewitsch, Angiono and Heckenberger1, Prop. 4.1] implies that $H$ is isomorphic either to $\mathfrak U(\mathcal {D},\,0)$ or $\mathfrak U(\mathcal {D},\,1)$, the Hopf algebras introduced in [Reference Andruskiewitsch, Angiono and Heckenberger1, §4.1].
Assume that $\chi = \varepsilon$. Pick a basis $(a_0 = 1-g,\, a_1,\, a_2)$ such that any $h\in G$ acts on $\mathcal {P}_{g,1}(H)$ by (1.14) where $\zeta \in \operatorname {Der}_{\varepsilon,\varepsilon }({ \Bbbk }G,\, { \Bbbk })$ and $\xi \in ({ \Bbbk }G )^{*}$ satisfies (1.15). Let $A$ be the subalgebra generated by $\mathcal {P}_{g,1}(H)$. As explained above we consider two cases.
Case (A): $\zeta (g) = 0$, thus $\zeta = 0$. Even if [Reference Andruskiewitsch, Angiono and Heckenberger1, Proposition 4.2] does not apply in general since we may have $\xi \ne 0$, it does apply to $A$ up to changing the base to $(a_0,\, a_1,\, \widetilde {a}_2)$ where $\widetilde {a}_2 := a_2 - \xi (g) a_1$, see (1.14). Call the new basis again $(a_0,\, a_1,\, a_2)$ by abuse of notation. Hence $A \simeq \mathfrak U(\mathcal {D}',\,\lambda )$ where $\mathcal {D}' = (g,\, \chi _{\vert \langle g \rangle },\, \eta _{\vert \langle g \rangle })$ is a YD-triple over the subgroup $\langle g \rangle$ of $G$ and $\lambda \in \{0,\,1\}$. In particular the following equality holds in $H$:
We first claim that $A$ is stable under the action of $G$. Indeed let $G$ act on the free algebra generated by $g^{\pm 1}$, $a_1$, $a_2$, where $G$ acts trivially on $g$, and by (1.14) on $a_1$, $a_2$. As $g$ is central, the action of each $h\in G$ preserves the defining ideal of $A$, so $G$ acts on $A$.
We next claim that $H \simeq A\rtimes { \Bbbk }G /I$, where $I$ is the ideal that identifies the two copies of $g$ where $\rtimes$ stands for smash product. Indeed, the inclusions $A\hookrightarrow H$, $\Bbbk G\hookrightarrow H$ induce a Hopf algebra map $\psi :A\rtimes \Bbbk G/ I \to H$. As $\operatorname {gr} H\simeq \mathscr {B}(V)\#\Bbbk G$, $H$ is generated by $a_1$, $a_2$ and $G$, so $\psi$ is surjective. On the other hand, $(A\rtimes \Bbbk G/ I )_1$ is spanned by the set $\{1\otimes h,\, a_1\otimes h,\, a_2\otimes h | h\in G\}$. The image of this set under $\psi$ is linearly independent, which implies that $\psi _{\vert (A\rtimes \Bbbk G/ I )_1}$ is injective. By [Reference Montgomery2, 5.3.1], $\psi$ is injective, and the claim follows. As a consequence, the set $\{a_1^{m} a_2^{n} h \, | \, m,\,n\in \mathbb {N}_0,\, \, h\in G \}$ is a basis of $H$.
Finally, we see that there is a Hopf algebra map $\mathfrak U_{\xi }(\mathcal {D},\,\lambda ) \to H$; since this map sends a basis to a basis, we conclude that $H\simeq \mathfrak U_{\xi }(\mathcal {D},\,\lambda )$.
Case (B). $\zeta (g) \neq 0$. As discussed above, we may assume that $\zeta = \eta$. Recall that we are assuming that $\operatorname {GKdim} H < \infty$. We claim that
(i) There exists a Hopf algebra isomorphism $A \simeq {{\mathfrak U}^{\text {jordan}}}$, cf. (1.4).
(ii) $\xi (h)=\tfrac {1}{2}(\eta (h)^{2}-\eta (h))$ for all $h\in G$.
(iii) $A$ is stable under the adjoint action of $G$ and $H \simeq A\rtimes { \Bbbk }G /I$, where $I$ is the ideal that identifies the two copies of $g$.
(iv) The set $\{a_1^{m} a_2^{n} h \, | \, m,\,n\in \mathbb {N}_0,\, \, h\in G \}$ is a basis of $H$ and $H\simeq {{\mathfrak U}^{\text {jordan}}}(\mathcal {D})$.
(i): It is easy to see that there exists a Hopf algebra surjective map $\widetilde {\pi }:{{\widetilde {\mathfrak U}}^{\mathtt {jordan}}}\to A$, which applies $g$, $a_1$, $a_2$ to the corresponding elements of $A$. Hence $\widetilde {\pi }(z)\in \mathcal {P}_{g^{2},1}(A)$, by Lemma 2. Now, as $g\ne g^{2}$ and $\operatorname {gr} H\simeq \mathscr {B}(V)\# \Bbbk G$, we have that $\mathcal {P}_{g^{2},1}(H)=\mathcal {P}_{g^{2},1}(H) \cap H_0 = { \Bbbk } (1-g^{2})$; thus there exists $\lambda \in \Bbbk$ such that $\widetilde {\pi }(z)=\lambda (1-g^{2})$, which implies that $\widetilde {\pi }$ factors through a map $\pi : {\mathfrak U}^{\text {jordan}}_{\lambda } \twoheadrightarrow A$. The set $\{g^{k},\,a_1g^{k},\, a_2g^{k}: k\in \mathbb {Z}\}$ is linearly independent in $H$, so $\pi _{\vert ({\mathfrak U}^{\text {jordan}}_{\lambda })_1}$ is injective. By [Reference Montgomery2, 5.3.1], $\pi$ is an isomorphism. Up to composing with $\varphi _{0,\lambda }$, see Remark 3, we may assume that $\lambda =0$.
(ii): Given $h\in G$, let $\gamma _h\in \operatorname {End}_{{ \Bbbk }} H$ be given by
Note that $\gamma _h(xy)=\gamma _h(x)(\gamma _h(y)+y)+x\gamma _h(y)$ for all $x,\,y\in H$. From (1.14),
Therefore,
By (i), $z=0$, so $\gamma _h(z)=0$. Thus, $\xi (h)=\tfrac 12( \eta (h)^{2}- \eta (h))$.
(iii): Let $G$ act on the free algebra generated by $g^{\pm 1}$, $a_1$, $a_2$, where $G$ acts trivially on $g$, and by (1.14) on $a_1$, $a_2$. Each $h\in G$ fixes the defining relations $gg^{-1} - 1$, $g^{-1}g - 1$, $ga_1 - a_1\,g - g+g^{2}$, $z$, and
so the action descends to $A$. The proof of (iv) is as in Case (A).
Acknowledgements
N. A. thanks François Dumas for conversations on and help with the computations in this Note.
N. A. and I. A. were partially supported by CONICET, FONCyT-ANPCyT, Secyt (UNC). The work of N. A. was partially done during a visit to the University of Clermont. The three authors were partially supported by the Alexander von Humboldt Foundation through the Research Group Linkage Programme.
Competing interests
The authors declare none.