Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T11:59:30.889Z Has data issue: false hasContentIssue false

Enabling Distributed Teams – A Process Model for Early and Continuous Method Validation

Published online by Cambridge University Press:  26 May 2022

K. Duehr*
Affiliation:
Karlsruhe Institute of Technology, Germany
J. Grimminger
Affiliation:
TRUMPF GmbH + Co. KG, Germany
S. Rapp
Affiliation:
Karlsruhe Institute of Technology, Germany
A. Albers
Affiliation:
Karlsruhe Institute of Technology, Germany
N. Bursac
Affiliation:
TRUMPF GmbH + Co. KG, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Neglecting challenges of distributed collaboration can lead to significant efficiency and effectiveness losses in agile, distributed development teams. The EDiT method provides support for improving distributed collaboration of development teams. To ensure acceptance, applicability, and contribution to success in industrial development practice, it is necessary to validate the EDiT method. The goal of this contribution is the development of a process model for early and incremental validation of the EDiT method in the field finally leading to a validation of the EDiT method itself.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2022.

References

Albers, A., Behrendt, M., Klingler, S. and Matros, K. (2016a), “Verifikation und Validierung im Produktentstehungsprozess”, in Lindemann, U. (Ed.), Handbuch Produktentwicklung, Hanser, München, pp. 541569. 10.3139/9783446445819.019Google Scholar
Albers, A., Reiss, N., Bursac, N. and Richter, T. (2016b), “iPeM – Integrated Product Engineering Model in Context of Product Generation Engineering”, 26th CIRP Design Conference 2016, pp. 100105. 10.1016/j.procir.2016.04.168Google Scholar
Albers, A., Weissenberger-Eibl, M.A., Duehr, K., Zech, K. and Seus, F. (2020), “Literature-based identification of success-relevant influencing factors of distributed product development”, 30th CIRP Design Conference, pp. 415420. 10.1016/j.procir.2019.11.007.Google Scholar
Andreasen, M.M. (2010), “Design Research Consolidation as a Design Society Crusade”, Proceedings of CEPHAD.Google Scholar
Bavendiek, A.-K., Inkermann, D. and Vietor, T. (2016), “Supporting Collaborative Design by Digital Tools – Potentials and Challenges”, Proceedings of NordDesign 2016, pp. 248257, Trondheim, Norway, 10th - 12th August 2016Google Scholar
Blessing, L.T.M. and Chakrabarti, A. (2009), DRM, a Design Research Methodology, Springer London, London.Google Scholar
Bursac, N. (2016), Model Based Systems Engineering zur Unterstützung der Baukastenentwicklung im Kontext der Frühen Phase der Produktgenerationsentwicklung, Dissertation, IPEK, Karlsruhe Institute of Technologie (KIT).Google Scholar
Cantamessa, M. (2003), “An empirical perspective upon design research”, Journal of Engineering Design, Vol. 14 No. 1, pp. 115. 10.1080/0954482031000078126CrossRefGoogle Scholar
digital.ai (2020), 14th annual state of agile report, available at: https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494.Google Scholar
Duehr, K., Efremov, P., Heimicke, J., Teitz, E.M., Ort, F., Weissenberger-Eibl, M. and Albers, A. (2021a), “The Positive Impact of Agile Retrospectives on the Collaboration of Distributed Development Teams – a Practical Approach on the Example of Bosch Engineering GmbH”, Proceedings of the 23nd International Conference on Engineering Design (ICED21), pp. 30713080, 16-20 August 2021, Gothenburg, Sweden. 10.1017/pds.2021.568 Google Scholar
Duehr, K., Hirsch, M., Albers, A. and Bursac, N. (2020), “A METHODOLOGY TO IDENTIFY AND ADDRESS IMPROVEMENT POTENTIALS IN COMMUNICATION PROCESSES OF DISTRIBUTED PRODUCT DEVELOPMENT – AN INITIAL APPROACH”, Proceedings of the Design Society: DESIGN Conference, Vol. 1, pp. 541550. 10.1017/pds.2021.568Google Scholar
Duehr, K., Hofelich, M., Beck, L. and Albers, A. (2021b), “A Validation Environment for a method to enable distributed agile product development teams”, 7-8 July, Glasgow, Scotland.Google Scholar
Duehr, K., Kopp, D., Walter, B., Spadinger, M. and Albers, A. (2019), “Einflussfaktoren in der standortverteilten Produktgenerationsentwicklung – Eine literaturbasierte Momentaufnahme”, ENTWERFEN ENTWICKELN ERLEBEN in Produktentwicklung und Design 2019.Google Scholar
Duehr, K., Schiele, A., Mueller, H., Kopp, D., Hofelich, M. and Albers, A. (2021c), “EDiT – Requirements of Enabling Distributed Collaboration in Product Development Teams, paper presented at ISPIM Innovation Conference, 20-23 June, Berlin, Germany.Google Scholar
Dumitrescu, R., Albers, A., Riedel, O., Stark, R. and Gausemeier, J. (2021), Engineering in Deutschland - Status quo in Wirtschaft und Wissenschaft: Ein Beitrag zum Advanced Systems Engineering, Paderborn.Google Scholar
Ehrlenspiel, K. and Meerkamm, H. (2017), Integrierte Produktentwicklung. Denkabläufe, Methodeneinsatz, Zusammenarbeit. München, Wien: Carl Hanser Verlag.CrossRefGoogle Scholar
Garnadt, N., Schnitzer, M. and Viete, S. (2020), “Räumliche Flexibilisierung durch zunehmende Homeoffice-Nutzung”, Wirtschaftsdienst (Hamburg, Germany 1949), Vol. 100 No. 9, pp. 661666. 10.1007/s10273-020-2734-zGoogle Scholar
Graner, M. and Behr, M.M. (2012), “The use of methods in new product development - a review of empirical literature”, International Journal of Product Development, Vol. 16 No. 2, p. 158. 10.1504/ijpd.2012.049063Google Scholar
Himme, A. (2007), “Gütekriterien der Messung: Reliabilität, Validität und Generalisierbarkeit”, in Albers, S. (Ed.), Methodik der empirischen Forschung, Vol. 3, 2., Gabler, Wiesbaden, pp. 375390. 10.1007/978-3-8349-9121-8_25Google Scholar
Larsson, A., Törlind, P., Karlsson, L., Mabogunje, A. and Leifer, L.e.a. (2003), “Distributed team innovation - a framework for distributed product development”, ICED 03, 14th International Conference on Engineering Design; 19 - 21 August 2003, The Royal Institute of Technology, Stockholm, Vol. 31.Google Scholar
Marxen, L. (2014), “A Framework for Design Support Development based on the integrated Product Engineering Model iPeM”, Dissertation, IPEK, Karlsruhe Institute of Technologie (KIT).Google Scholar
Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H. and Blessing, L. T. M. (2007), Engineering Design, A systematic approach, Springer London, London. 10.1007/978-1-84628-319-2Google Scholar
Pedersen, K., Emblemsvag, J., Allen, J. and Mistree, F. (2000), “The 'Validation Square'-Validating Design Methods”, ASME Design Engineering Technical Conferences.Google Scholar
Schwaber, K., Sutherland, J. (2020), “The Scrum Guide. The Definitive Guide to Scrum: The Rules of the Game.”, available at: https://scrumguides.org/download.html.Google Scholar
Üreten, S., Eisenmann, M., Nelius, T., Cao, S., Matthiesen, S. and Krause, D. (2019), “A Concept Map for Design Method Experiments in Product Development – A Guideline for Method Developers”, in DFX 2019: Proceedings of the 30th Symposium Design for X, 18-19 September 2019, Jesteburg, Germany, 18th-19th September 2019, The Design Society. 10.35199/dfx2019.13Google Scholar
Üreten, S., Eisenmann, M., Nelius, T., Garrelts, E., Krause, D. and Matthiesen, S. (2020), “CURRENT CHALLENGES AND SOLUTION APPROACHES IN EMPIRICAL ENGINEERING DESIGN RESEARCH – A WORKSHOP FOR EMPIRICAL RESEARCH”, Proceedings of the Design Society: DESIGN Conference, Vol. 1, pp. 6170. 10.1017/dsd.2020.280Google Scholar
Vajna, S. and Kittel, K. (2009), “An Approach to Compare Product Development Methods”, in DS 58-5: Proceedings of ICED 09, Vol. 5, pp. 313324, 24.-27 August 2009, Palo Alto, USA, The Design Society. 10.35199/dfx2019.13Google Scholar
Zanker, W. (1999), Situative Anpassung und Neukombination von Entwicklungsmethoden, Zugl.: München, Techn. Univ., Diss., 1999, Reihe Konstruktionstechnik München, Shaker, Aachen.Google Scholar