Skip to main content Accessibility help
×
Home

STOCHASTIC DIFFERENTIAL EQUATION FOR TCP WINDOW SIZE: ANALYSIS AND EXPERIMENTAL VALIDATION

  • A. Budhiraja (a1), F. Hernández-Campos (a2), V. G. Kulkarni (a3) and F. D. Smith (a2)

Abstract

In this paper we develop a stochastic differential equation to describe the dynamic evolution of the congestion window size of a single TCP session over a network. The model takes into account recovery from packet losses with both fast recovery and time-outs, boundary behavior at zero and maximum window size, and slow-start after time-outs. We solve the differential equation to derive the distribution of the window size in steady state. We compare the model predictions with the output from the NS simulator.

Copyright

References

Hide All

REFERENCES

Abouzeid, A., Roy, S., & Azizoglu, M. (2000). Stochastic modeling of TCP over lossy links. Proceedings of INFOCOM 2000.
Abouzeid, A. Roy, S.,, &Azizoglu, M. (1999). Stochastic modeling of TCP over random loss channels. Proceedings of the 6th International Conference on High Performance Computing.
Altman, E., Avrachenkov, K., & Barakat, C. (2000). A stochastic model of TCP/IP with stationary random loss. Proceedings of SIGCOMM 2000.
Altman, E., Avrachenkov, K., & Barakat, C. (2000). Impact of bursty losses on TCP performance. Performance Evaluation 42(2–3): 129147.
Altman, E., Avrachenkov, K., & Barakat, C. (2000). TCP in presence of bursty losses. Proceedings of SIGMETRICS 2000.
Altman, E., Avrachenkov, K., & Barakat, C. (2002). TCP network calculus: The case of large delay–bandwidth product. Proceedings of INFOCOM 2002.
Altman, E., Jimenez, T., & Nunez-Queija, R. (2002). Analysis of two competing TCP/IP connections. Performance Evaluation 49(1–4): 4355.
Anjum, F. & Tassiulas, L. (1999). On the behavior of different TCP algorithms over a wireless channel with correlated packet losses. Proceedings of SIGMETRICS 1999.
Baccelli, F. & Hong, D. (2000). TCP is max-plus linear. Proceedings of SIGCOMM 2000.
Baccelli, F. & Hong, D. (2002). AIMD, fairness and fractal scaling of TCP traffic. Proceedings of INFOCOM 2002.
Barakat, C. (2001). TCP modeling and validation. IEEE Network 15(3): 3847.
Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J., Helmy, A., Huang, P., McCanne, S., Varad-han, K., Xu, Y., & Yu, H. (2000). Advances in network simulation. IEEE Computer 33(5): 5967.
Cardwell, N., Savage, S., & Anderson, T. (2000). Modeling TCP latency. Proceedings of INFOCOM 2000.
Dumas, V., Guillemin, F., & Robert, P. (2001). Limit results for Markovian models of TCP. Proceedings of GLOBECOM 2001.
Dumas, V., Guillemin, F., & Robert, P. (2002). A Markovian analysis of additive-increase multiplicative-decrease (AIMD) algorithms. Advances in Applied Probability 34(1): 85111.
Feldmann, A., Gilbert, A., Huang, P., & Willinger, W. (1999). Dynamics of IP traffic: A study of the role of variability and the impact of control. Proceedings of SIGCOMM 1999.
Floyd, S. (1991). Connections with multiple congested gateways in packet-switched networks Part 1: One-way traffic. Computer Communication Review 21(5): 3047.
Floyd, S. & Fall, K. (1999). Promoting the use of end-to-end congestion control in the internet. IEEE/ACM Transactions on Networking 7(4): 458472.
Floyd, S., Handley, M., Padhye, J., & Widmer, J. (2000). Equation-based congestion control for unicast applications. Proceedings of SIGCOMM 2000.
Floyd, S. & Jacobson, V. (1992). On traffic phase effects in packet-switched gateways. Internetworking: Research and Experience 3(3): 115156.
Garetto, M., Cigno, R., Meo, M., & Marsan, M. (2001). A detailed and accurate closed queueing network model of many interacting TCP flows. Proceedings of INFOCOM 2001.
Goyal, M., Guérin, R., & Rajan, R. (2002). Predicting TCP throughput from non-invasive network sampling. Proceedings of INFOCOM 2002.
Hollot, C., Misra, V., Towsley, D., & Gong, W. (2001). A control theoretic analysis of RED. Proceedings of INFOCOM 2001.
Hollot, C., Misra, V., Towsley, D., & Gong, W. (2001). On designing improved controllers for AQM routers supporting TCP flows. Proceedings of INFOCOM 2001.
Kelly, F., Maulloo, A., & Tan, D. (1998). Rate control for communication networks: Shadow prices, proportional fairness and stability. Journal of the Operational Research Society 49(3): 237252.
Kumar, A. (1998). Comparative performance analysis of versions of TCP in local network with a lossy link. IEEE/ACM Transactions on Networking 6(4): 485498.
Lakshman, T.V. & Madhow, U. (1997). The performance of networks with high bandwidth-delay products and random loss. IEEE/ACM Transactions on Networking 5(3): 336350.
Lakshman, T.V., Madhow, U., & Suter, B. (1997). Window-based error recovery and flow control with a slow acknowledgment channel: A study of TCP/IP performance. Proceedings of INFOCOM 1997.
Lakshman, T.V., Madhow, U., & Suter, B. (2000). TCP/IP performance with random loss and bidirectional congestion. IEEE/ACM Transactions on Networking 8(5): 541555.
Low, S.H. (2000). A duality model of TCP and queue management algorithms. Extended version of paper presented at Proceedings of ITC Specialist Seminar on IP Traffic Measurement, Modeling and Management.
Low, S., Peterson, L., & Wang, L. (2001). Understanding TCP Vegas: A duality model. Proceedings of SIGMETRICS 2001.
Mathis, M., Semke, J., Mahdavi, J., & Ott, T. (1997). The macroscopic behavior of the TCP congestion avoidance algorithm. Computer Communication Review 27(3): 6782.
Misra, A. & Ott, T. (1999). The window distribution of idealized TCP congestion avoidance with variable packet loss. Proceedings of INFOCOM 1999.
Misra, V., Gong, W., & Towsley, D. (1999). Stochastic differential equation modeling and analysis of TCP window size behavior. Proceedings of Performance 1999.
Misra, V., Gong, W., & Towsley, D. (2000). A fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED. Proceedings of SIGCOMM 2000.
Mitzenmacher, M. & Rajaraman, R. (2001). Towards more complete models of TCP latency and throughput. Journal of Supercomputing 20(2): 137160.
Ott, T., Kemperman, J.H.B., & Mathis, M. (1996). The stationary behavior of ideal TCP congestion avoidance, unpublished manuscript.
Padhye, J., Firoiu, V., Towsley, D., & Kurose, J. (1998). Modeling TCP throughput: A simple model and its empirical validation. Proceedings of SIGCOMM 1998.
Padhye, J., Firoiu, V., Towsley, D., & Kurose, J. (2000). Modeling TCP Reno performance: A simple model and its empirical validation. IEEE/ACM Transactions on Networking 8(2): 133145.
Roughan, M., Erramilli, A., & Veitch, D. (2001). Network performance for TCP networks. Part 1: Persistent sources. Proceedings of Seventeenth International Teletraffic Congress.
Sahu, S., Nain, P., Towsley, D., Diot, C., & Firoiu, V. (2000). On achievable service differentiation with token bucket marking for TCP. Proceedings of SIGMETRICS 2000.
Savari, S. & Telatar, E. (1999). The behavior of stochastic processes arising in window protocols. Proceedings of the 1999 IEEE International Symposium on Information Theory.
Schwefel, H. (2001). Behavior of TCP-like elastic traffic at a buffered bottleneck router. Proceedings of INFOCOM 2001.
Sikdar, B., Kalyanaraman, S., & Vastola, K.S. (2001). An integrated model for the latency and steady-state throughput of TCP connections. Performance Evaluation 46(2–3): 139154.
Sikdar, B., Kalyanaraman, S., & Vastola, K.S. (2001). Analytic models and comparative study of the latency and steady-state throughput of TCP Tahoe, Reno and SACK. Proceedings of GLOBECOM 2001.
Willinger, W., Taqqu, N., Sherman, R., & Wilson, D. (1997). Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Transactions on Networking 5(1): 7186.
Yang, Y. & Lam, S. (2000). General AIMD congestion control. Proceedings of ICNP 2000.
Yang, Y., Kim, M., & Lam, S. (2001). Transient behaviors of TCP-friendly congestion control protocols. Proceedings of INFOCOM 2001.
Zorzi, M., Chockalingam, A., & Rao, R. (2000). Performance analysis of TCP on channels with memory. IEEE-JSAC 18: 12891300.
URL: http://www.cs.unc.edu/Research/dirt/proj/tcpmodel

STOCHASTIC DIFFERENTIAL EQUATION FOR TCP WINDOW SIZE: ANALYSIS AND EXPERIMENTAL VALIDATION

  • A. Budhiraja (a1), F. Hernández-Campos (a2), V. G. Kulkarni (a3) and F. D. Smith (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed