Skip to main content Accessibility help
×
Home

The introduction of simple cardiorespiratory fitness testing in overweight/obese type 2 diabetics: a pilot study

  • Ľubica Cibičková (a1), David Karásek (a1), Jiří Lukeš (a2) and Norbert Cibiček (a3) (a4)

Abstract

Background

Low level of cardiorespiratory fitness has been recognized as an important independent and modifiable risk factor of increased morbidity and mortality. However, in standard outpatient settings, patients are not routinely screened for fitness and advantages of such testing for the management of type 2 diabetes have not been defined.

Aim

To describe the toleration of a fast, simple and practicable fitness test (2-min step-in-place test) by overweight/obese type 2 diabetics and their performance indicated by 2-min step-in-place test score (STS). To study short-term anthropometric, functional and metabolic changes following the implementation of the test in the selected population.

Methods

A total of 33 overweight/obese type 2 diabetics underwent, besides routine examination at the outpatient clinic, the fitness test (group A). Patients were asked to increase their regular physical activity with focus on walking without change in diet and chronic medication. Three to four months later, the subjects were tested again. An identical number of age- and sex-matched obese diabetics followed in our outpatient clinic (without fitness testing), was randomly selected from the Hospital Information System (control group B).

Findings

All patients subjected to fitness testing completed the protocol successfully. STS score was found to have a considerable range with differences between males and females at the borderline of statistical significance. The data are compliant with lower aerobic endurance of obese diabetics compared with healthy population. Within study period, the tested group presented with improvements in STS (referring especially to the males) as well as in several laboratory parameters of glucose and lipid homeostasis, glomerular function and subclinical inflammation with no reflection in anthropometry. Group B demonstrated no significant change. In conclusion, 2-min step-in-place test is fast, undemanding and well-tolerated by patients and personnel. Following its validation based on cardiopulmonary exercise testing, the test may prove recommendable for screening or self-monitoring purposes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The introduction of simple cardiorespiratory fitness testing in overweight/obese type 2 diabetics: a pilot study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The introduction of simple cardiorespiratory fitness testing in overweight/obese type 2 diabetics: a pilot study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The introduction of simple cardiorespiratory fitness testing in overweight/obese type 2 diabetics: a pilot study
      Available formats
      ×

Copyright

Corresponding author

Correspondence to: Norbert Cibiček, Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Hněvotínská 3, 775 15 Olomouc, Czech Republic. Email: norbert.cibicek@upol.cz

References

Hide All
Armstrong, D. 1991: The social context of technology in diabetes care: “compliance“ and “control”. Introduction. In Bradley, C., Christie, M. and Home, P., editors. Technology of diabetes care: converging medical and psychosocial perspectives. Chur, Switzerland: Harwood Academic Publishers, 1724.
Baria, F., Kamimura, M.A., Aoike, D.T., Ammirati, A., Rocha, M.L., De Mello, M.T. and Cuppari, L. 2014: Randomized controlled trial to evaluate the impact of aerobic exercise on visceral fat in overweight chronic kidney disease patients. Nephrology, Dialysis, Transplantation 29, 857864.
Barry, V.W., Baruth, M., Beets, M.W., Durstine, J.L., Liu, J. and Blair, S.N. 2014: Fitness vs. fatness on all-cause mortality: a meta-analysis. Progress in Cardiovascular Diseases 56, 382390.
Blair, S.N., Kohl, H.W., Paffenbarger, R.S. Jr., Clark, D.G., Cooper, K.H. and Gobbons, L.W. 1989: Physical fitness and all-cause mortality: a prospective study of healthy men and women. Journal of the American Medical Association 262, 23952401.
Bouchard, C., Blair, S.N. and Katzmarzyk, P.T. 2015: Less sitting, more physical activity, or higher fitness? Mayo Clinic Proceedings 90, 15331540.
Boulé, N.G., Kenny, G.P., Haddad, D., Wells, G.A. and Sigal, R.J. 2003: Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia 46, 10711081.
Brett, K.E., Wilson, S., Ferraro, Z.M. and Adamo, K.B. 2015: Self-report pregnancy physical activity questionnaire overestimates physical activity. Canadian Journal of Public Health 106, e297e302.
Charles, S. 2015: Implications of the patient-physician relationship for people with diabetes, thesis. Dietrich College of Humanities and Social Sciences.
Church, T.S., LaMonte, M.J., Barlow, C.E. and Blair, S.N. 2005: Cardiorespiratory fitness and body mass index as predictors of cardiovascular disease mortality among men with diabetes. Archives of Internal Medicine 165, 2114–20.
Cruz, M.L., Shaibi, G.Q., Weigensberg, M.J., Spruijt-Metz, D., Ball, G.D. and Goran, M.I. 2005: Pediatric obesity and insulin resistance: chronic disease risk and implications for treatment and prevention beyond body weight modification. Annual Review of Nutrition 25, 435468.
Després, J.P. 2016: Physical activity, sedentary behaviours, and cardiovascular health: when will cardiorespiratory fitness become a vital sign? Canadian Journal of Cardiology 32, 505513.
Fricker, J., Baelde, D., Igoin-Apfelbaum, L., Huet, J.M. and Apfelbaum, M. 1992: Underreporting of food intake in obese “small eaters”. Appetite 19, 273283.
Friedewald, W.T., Levy, R.I. and Fredrickson, D.S. 1972: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry 18, 499502.
Frohlich, J. and Dobiasova, M. 2003: Fractional esterification rate of cholesterol and ratio of triglycerides to HDL-cholesterol are powerful predictors of positive findings on coronary angiography. Clinical Chemistry 49, 18731880.
Garriguet, D. and Colley, R.C. 2014: A comparison of self-reported leisure-time physical activity and measured moderate-to-vigorous physical activity in adolescents and adults. Health Reports 25, 311.
Gray, B.J., Stephens, J.W., Williams, S.P., Davies, C.A., Turner, D. and Bracken, R.M., Prosiect Sir Gâr Group 2015: Cardiorespiratory fitness is a stronger indicator of cardiometabolic risk factors and risk prediction than self-reported physical activity levels. Diabetes and Vascular Disease Research 12, 428435.
Hammonds, T.L., Gathright, E.C., Goldstein, C.M., Penn, M.S. and Hughes, J.W. 2016: Effects of exercise on c-reactive protein in healthy patients and in patients with heart disease: a meta-analysis. Heart and Lung: the Journal of Critical Care 45, 273282.
Hansen, E., Landstad, B.J., Gundersen, K.T. and Svebak, S. 2012: The relative importance of aerobic capacity, physical activity and body mass index in impaired glucose tolerance and Type 2 diabetes. Vulnerable Groups & Inclusion 3, http://dx.doi.org/10.3402/vgi.v3i0.10232.
Herdy, A.H., Ritt, L.E., Stein, R., Araújo, C.G., Milani, M., Meneghelo, R.S., Ferraz, A.S., Hossri, C., Almeida, A.E., Fernandes-Silva, M.M. and Serra, S.M. 2016: Cardiopulmonary exercise test: background, applicability and interpretation. Arquivos Brasileiros de Cardiologia 107, 467481.
Hughes, V.A., Fiatrone, M.A., Fielding, R.A., Kahn, B.B., Ferrara, C.M., Shepherd, P., Fisher, E.C., Wolfe, R.R., Elahi, D. and Evans, W.J. 1993: Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. American Journal of Physiology 264, E85562.
Israel, A., Kivity, S., Sidi, Y., Segev, S., Berkovitch, A., Klempfner, R., Lavi, B., Goldenberg, I. and Maor, E. 2016: Use of exercise capacity to improve SCORE risk prediction model in asymptomatic adults. European Heart Journal 37, 23002306.
Jones, C.J. and Rikli, R.E. 2002: Measuring functional fitness of older adults. The Journal on Active Aging 1, 2430.
Kelley, D.E. and Goodpaster, B.H. 1999: Effects of physical activity on insulin action and glucose tolerance in obesity. Medicine and Science in Sports and Exercise 31, 619623.
Kodama, S., Saito, K., Tanaka, S., Maki, M., Yachi, Y., Asumi, M., Sugawara, A., Totsuka, K., Shimano, H., Ohashi, Y., Yamada, N. and Sone, H. 2009: Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. Journal of the American Medical Association 301, 20242035.
Kokkinos, P.F., Faselis, C., Myers, J., Panagiotakos, D. and Doumas, M. 2013: Interactive effects of fitness and statin treatment on mortality risk in veterans with dyslipidemia: a cohort study. Lancet 381, 394399.
Lee, C.D., Jackson, A.S. and Blair, S.N. 1998: US weight guidelines: is it also important to consider cardiorespiratory fitness? International Journal of Obesity and Related Metabolic Disorders 22, S27.
Lee, D.C., Sui, X., Ortega, F.B., Kim, Y.S., Church, T.S., Winett, R.A., Ekelund, U., Katzmarzyk, P.T. and Blair, S.N. 2011: Comparisons of leisure-time physical activity and cardiorespiratory fitness as predictors of all-cause mortality in men and women. British Journal of Sports Medicine 45, 504510.
Lee, D.D., Blair, S.N. and Jackson, A.S. 1999: Cardiorespiratory fitness, body composition, and all cause cardiovascular disease mortality in men. American Journal of Clinical Nutrition 69, 373380.
Lee, Y.Y. and Lin, J.L. 2009: The effects of trust in physician on self-efficacy, adherence and diabetes outcomes. Social Science & Medicine (1982) 68, 10601068.
Levey, A.S., Stevens, L.A., Schmid, C.H., Zhang, Y.L., Castro, A.F. 3rd, Feldman, H.I., Kusek, J.W., Eggers, P., Van Lente, F., Greene, T. and Coresh, J., CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) 2009: A new equation to estimate glomerular filtration rate. Annals of Internal Medicine 150, 604612.
Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F. and Turner, R.C. 1985: Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412419.
McAuley, P.A. and Beavers, K.M. 2014: Contribution of cardiorespiratory fitness to the obesity paradox. Progress in Cardiovascular Diseases 56, 434440.
Olsson, S.J., Borjesson, M., Ekblom-Bak, E., Hemmingsson, E., Hellenius, M.L. and Kallings, L.V. 2015: Effects of the Swedish physical activity on prescription model on health related quality of life in overweight older adults: a randomized controlled trial. BioMed Central Public Health 15, 687696.
Peyrot, M. and Rubin, R.R. 2007: Behavioral and psychosocial interventions in diabetes: a conceptual review. Diabetes Care 30, 24332440.
Prince, S.A., Adamo, K.B., Hamel, M.E., Hardt, J., Connor Gorber, S. and Tremblay, M. 2008: A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. The International Journal of Behavioral Nutrition and Physical Activity 5, 5679.
Rivero, A., Mora, C., Muros, M., Garcia, J., Herrera, H. and Navarro-González, J.F. 2009: Pathogenic perspectives for the role of inflammation in diabetic nephropathy. Clinical Science (London) 116, 479492.
Ross, R., Blair, S.N., Arena, R., Church, T.S., Després, J.P., Franklin, B.A., Haskell, W.L., Kaminsky, L.A., Levine, B.D., Lavie, C.J., Myers, J., Niebauer, J., Sallis, R., Sawada, S.S., Sui, X. and Wisløff, U. 2016: Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation 134, e653e699.
Różańska-Kirschke, A., Kocur, P., Wilk, M. and Dylewicz, P. 2006: The Fullerton Fitness Test as an index of fitness in the elderly. Medical Rehabilitation 10, 916.
Schwingshackl, L., Dias, S., Strasser, B. and Hoffmann, G. 2013: Impact of different training modalities on anthropometric and metabolic characteristics in overweight/obese subjects: a systematic review and network meta-analysis. Public Library of Science one 8, e82853.
Stevens, G.A., Singh, G.M., Lu, Y., Dannaei, G., Lin, J.K., Finucane, M.M., Bahalim, A.N., McIntire, R.K., Gutierrez, H.R., Cowan, M., Paciorek, C.J., Farzadfar, F., Riley, L. and Ezzati, M., Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Body Mass Index) 2012: National, regional, and global trends in adult overweight and obesity prevalences. Population Health Metrics 10, 2237.
Svačinová, H. 2007: Exercise therapy for patients with metabolic syndrome. Vnitr̆ní lékar̆ství 53, 540544.
Sykes, K. and Roberts, A. 2004: The Chester step test – a simple yet effective tool for the prediction of aerobic capacity. Physiotherapy 90, 183188.
Tanasescu, M., Leitzmann, M.F., Rimm, E.G. and Hu, F.B. 2003: Physical activity in relation to cardiovascular disease and total mortality among men with type 2 diabetes. Circulation 107, 24352439.
Wei, M., Gibbons, L.W., Kampert, J.B., Nichman, M.Z. and Blair, S.N. 2000: Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Annals of Internal Medicine 132, 605611.
Wei, M., Kampert, J.B., Barlow, C.E., Nichaman, M.Z., Gibbons, L.W., Paffenbarger, R.S. Jr. and Blair, S.N. 1999: Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. Journal of the American Medical Association 282, 15471553.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed