Skip to main content Accessibility help
×
Home

How do socio-economic factors and distance predict access to prevention and rehabilitation services in a Danish municipality?

  • Anette L. Hindhede (a1), Ane Bonde (a2), Jasper Schipperijn (a3), Stine H. Scheuer (a4), Susanne M. Sørensen (a5) and Jens Aagaard-Hansen (a2)...

Abstract

Aim

The aim was to explore the extent to which a Danish prevention centre catered to marginalised groups within the catchment area. We determined whether the district’s socio-economic vulnerability status and distance from the citizens’ residential sector to the centre influenced referrals of citizens to the centre, their attendance at initial appointment, and completion of planned activities at the centre.

Background

Disparities in access to health care services is one among many aspects of inequality in health. There are multiple determinants within populations (socio-economic status, ethnicity, and education) as well as the health care systems (resource availability and cultural acceptability).

Methods

A total of 347 participants referred to the centre during a 10-month period were included. For each of 44 districts within the catchment area, the degree of socio-economic vulnerability was estimated based on the citizens’ educational level, ethnicity, income, and unemployment rate. A socio-economic vulnerability score (SE-score) was calculated. Logistic regression was used to calculate the probability that a person was referred to the centre, attended the initial appointment, and completed the planned activities, depending on sex, age, SE-score of district of residence, and distance to the centre.

Findings

Citizens from locations with a high socio-economic vulnerability had increased probability of being referred by general practitioners, hospitals, and job centres. Citizens living further away from the prevention centre had a reduced probability of being referred by their general practitioners. After referral, there was no difference in probability of attendance or completion as a function of SE-score or distance between the citizens’ district and the centre. In conclusion, the centre is capable of attracting referrals from districts where the need is likely to be relatively high in terms of socio-economic vulnerability, whereas distance reduced the probability of referral. No differences were found in attendance or completion.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      How do socio-economic factors and distance predict access to prevention and rehabilitation services in a Danish municipality?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      How do socio-economic factors and distance predict access to prevention and rehabilitation services in a Danish municipality?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      How do socio-economic factors and distance predict access to prevention and rehabilitation services in a Danish municipality?
      Available formats
      ×

Copyright

Corresponding author

Correspondence to: Anette L. Hindhede, Institute of Learning and Philosophy, Aalborg University, A.C. Meyers Vænge 15A, 2450 Copenhagen, Denmark. Email: alh@learning.aau.dk

References

Hide All
Bak, C., Dreier, J. and Andersen, P. 2011. Anvendelse af lokale sundhedsprofiler i udsatte områder (Use of local health profiles in marginalised areas). Forskningsenheden for Sundhedsfremme (Research Unit for Health Promotion), SDU Esbjerg.
Christensen, A.I., Davidsen, M., Ekholm, O., Pedersen, P.V. and Juel, K. 2014. Danskernes Sundhed – Den Nationale Sundhedsprofil 2013 (The health of the Danes – the national health profile 2013). Copenhagen: Danish Health Authority.
Danish Health Authority. 2008. Kortlægning af kommunernes forebyggelses – og sundhedsfremmeindsats (Mapping of the municipalities prevention and health promotion activities 2008). Copenhagen: Danish Health Authority.
Deleuran, J.K. 2012: Flere og flere kommuner får sundhedshuse (More and more municipalities acquire health centres). Momentum 4 (5), 79.
Diderichsen, F., Andersen, I. and Manuel, C. 2012: The Working Group of the Danish Review on Social Determinants of Health, In: Andersen, A. M. N., Bach, E., Baadsgaard, M., Brønnum-Hansen, H., Hansen, F. K., Jeune, B., Jørgensen, T., and Søgaard, J. (Eds): Health Inequality – determinants and policies. Scandinavian Journal of Public Health 40 (Suppl 8), 12105.
Diderichsen, F., Brønnum-Hansen, H. and Schnohr, C.W. 2014. Folkesundheden i København 2014 – i korte træk (Population health in Copenhagen 2014 in brief). Copenhagen: City Department of Health and Care.
Dryden, R., Williams, B., McCowan, C. and Themessl-Huber, M. 2012: What do we know about who does and does not attend general health checks? Findings from a narrative scoping review. BMC Public Health 12 (1), 123.
Furler, J. 2006: Social determinants of health and health inequalities: what role for general practice? Health Promotion Journal of Australia: Official Journal of Australian Association of Health Promotion Professionals 17 (3), 264265.
Grabovschi, C., Loignon, C. and Fortin, M. 2013: Mapping the concept of vulnerability related to health care disparities: a scoping review. BMC Health Services Research 13, 94.
Grace, S.L., Gravely-Witte, S., Brual, J., Suskin, N., Higginson, L., Alter, D. and Stewart, D.E. 2008: Contribution of patient and physician factors to cardiac rehabilitation referral: a prospective multilevel study. Nature: Clinical Practice Cardiovascular Medicine 5 (10), 653662.
Groeneveld, I.F., Proper, K.I., van der Beek, A.J., Hildebrandt, V.H. and van Mechelen, W. 2009: Factors associated with non-participation and drop-out in a lifestyle intervention for workers with an elevated risk of cardiovascular disease. The International Journal of Behavioral Nutrition and Physical Activity 6 (1), 80.
Hart, J.T. 1971: The inverse care law. Lancet 297, 405412.
Hoebel, J., Starker, A., Jordan, S., Richter, M. and Lampert, T. 2014: Determinants of health check attendance in adults: findings from the cross-sectional German Health Update (GEDA) study. BMC Public Health 14 (1), 913.
Kelly-Irving, M., Delpierre, C., Schieber, A.-C., Lepage, B., Rolland, C., Afrité, A., Pascal, J., Cases, C., Lombrail, P. and Lang, T. 2011: Do general practitioners overestimate the health of their patients with lower education? Social Science and Medicine 73 (9), 14161421.
Kure-Biegel, N., Schnohr, C.W., Hindhede, A.L. and Diderichsen, F. 2016: Risk factors for not completing health interventions and the potential impact on health inequalities between educational groups – a mixed method study from Denmark. International Journal of Equity in Health 15, 54.
Levesque, J.-F., Harris, M.F. and Russell, G. 2013: Patient-centered access to health care: conceptualizing access at the interface of health systems and populations. International Journal for Equity in Health 12, 18.
Marmot, M. 2004. The Status Syndrome. New York, NY: Henry Holt and Company.
Melnyk, K.A.M. 1990: Barriers to care: operationalizing the variable. Nursing Research 39 (2), 108122.
Miller, W.R. and Rollnick, S. 2002. Motivational interviewing: preparing people for change, second edition. New York, NY: Guilford Press.
Morris, S., Sutton, M. and Gravelle, H. 2005: Inequity and inequality in the use of health care in England: an empirical investigation. Social Science & Medicine 60 (6), 12511266.
Shengelia, B., Murray, C.J.L. and Adams, O.B. 2003: Beyond access and utilization: defining and measuring health system coverage. In Murray, C.J.L. and Evans, D.B., editors, Health systems performance assessment. debates, methods and empiricism. Geneva: WHO, 221234.
Stirbu, I., Kunst, A., Mielck, A. and Mackenbach, J. 2011: Inequalities in utilisation of general practitioner and specialist services in 9 European countries. BMC Health Services Research 11 (1), 18.
Sørensen, T.H., Olsen, K.R and Vedsted, P. 2009: Association between general practice referral rates and patients’ socioeconomic status and access to specialised health care. A population-based nationwide study. Health Policy 92 (2–3), 180186.
The Danish Government. 2013. Mere borger mindre patient – et stærkt fælles sundhedsvæsen (More citizen less patient – a strong health care system). Copenhagen: Ministry of Health.
Veugelers, P. J. and Yip, A. M. 2003: Socioeconomic disparities in health care use: does universal coverage reduce inequalities in health? Journal of Epidemiology and Community Health 57 (6), 424428.
Whitehead, M. 1990. The concepts and principles of equity in health. Reg. Off. Eur. (EUR/ICP/RPD 414 7734r) Copenhagen: WHO.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed