Skip to main content Accessibility help

Increased Situation Awareness in Major Incidents—Radio Frequency Identification (RFID) Technique: A Promising Tool

  • Jorma Jokela (a1), Monica Rådestad (a2) (a3), Dan Gryth (a2) (a3), Helené Nilsson (a4), Anders Rüter (a4) (a5), Leif Svensson (a2) (a3), Ville Harkke (a6), Markku Luoto (a7) and Maaret Castrén (a3) (a8)...


Introduction: In mass-casualty situations, communications and information management to improve situational awareness is a major challenge for responders. In this study, the feasibility of a prototype system that utilizes commercially available, low-cost components, including Radio Frequency Identification (RFID) and mobile phone technology, was tested in two simulated mass-casualty incidents.

Methods: The feasibility and the direct benefits of the system were evaluated in two simulated mass-casualty situations: one in Finland involving a passenger ship accident resulting in multiple drowning/hypothermia patients, and another at a major airport in Sweden using an aircraft crash scenario. Both simulations involved multiple agencies and functioned as test settings for comparing the disaster management’s situational awareness with and without using the RFID-based system. Triage documentation was done using both an RFID-based system, which automatically sent the data to the Medical Command, and a traditional method using paper triage tags. The situational awareness was measured by comparing the availability of up-to date information at different points in the care chain using both systems.

Results: Information regarding the numbers and status or triage classification of the casualties was available approximately one hour earlier using the RFID system compared to the data obtained using the traditional method.

Conclusions: The tested prototype system was quick, stable, and easy to use, and proved to work seamlessly even in harsh field conditions. It surpassed the paper-based system in all respects except simplicity of use. It also improved the general view of the mass-casualty situations, and enhanced medical emergency readiness in a multi-organizational medical setting. The tested technology is feasible in a mass-casualty incident; further development and testing should take place.


Corresponding author

Correspondence: Jorma Jokela, RN, PhD Laurea University of Applied Sciences Uudenmaankatu22 05800 Hyvinkää, Finland E-mail:


Hide All
1.Hodgetts, T, Porter, . Major Incident Medical Management and Support: The Practical Approach at the Scene (MIMMS). 2nd ed. London: BMJ Books; 2002.
2.Schultz, CH, Koenig, KL, Noji, EK. A medical disaster response to reduce immediate mortality after an earthquake. N Engl J Med. 1996;334(7):438444.
3.Garner, A, Lee, A, Harrison, K, Schultz, CH. Comparative analysis of multiple-casualty incident triage algorithms. Ann Emerg Med. 2001;38(5):541548.
4.Garner, A. Documentation and tagging of casualties in multiple casualty incidents. Emerg Med (Fremantle). 2003;15(5–6):475479.
5.TSG Associates product information. Accessed February 16, 2009.
6.Chan, T, Killeen, J, Griswold, W, Lenert, L. Information technology and emergency medical care during disaster. Acad Emerg Med. 2004;11(11):12291236.
7.Jokela, J, Simons, T, Kuronen, P, et al. . Implementing RFID technology in a novel triage system during a simulated mass casualty situation. J Electronic Healthcare. 2008;14(1):105118.
8.Kumar, S, Swanson, E, Tran, T. RFID in the healthcare supply chain: usage and application. Int J Health Care Qual Assur. 2009;22(1):6781.
9.Van der Togt, R, Van Lieshout, E, Hensbroek, R, Beinat, E, Binnekade, J, Bakker, P. Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment. JAMA. 2008;299(24):28842889.
10.Fry, EA, Lenert, LA. MASCAL: RFID tracking of patients, staff and equipment to enhance hospital response to mass casualty events. AMIA Annu Symp Proc. 2005:261265.
11.The Swedish Civil Contingencies Agency. Myndigheten för samhällsskydd och beredskap, MSB. Accessed April 19, 2009.
12.The Swedish National Board of Health Welfare. The National Board of Health and Welfare’s instructions and general advice on peace-time disaster medical readiness and planning before raised readiness levels. SOSFS 2005:13. Accessed April 19, 2009.
13.The Centre for Teaching and Training in Disaster Medicine and Traumatology. Emergo Train System Website. Accessed July15, 2009.
14.Padmanabhan, N, Burstein, F, Churilov, L, Wassertheil, J, Hornblower, B, Parker, N. A mobile emergency triage decision support system evaluation. Proceedings of the 39th Annual Hawaii International Conference on System Sciences. (HICSS 06), 2006:5(4–7 January):96b (CD-ROM).
15.Fisher, JA, Monahan, T. Tracking the social dimensions of RFID systems in hospitals. Int J Med Informatics. 2008;77(3):176183.
16.Inoue, S, Sonoda, A, Yasuura, H. Experiment of large scale triage with RFID Tags. IPSJ SIG Technical Reports. 2006; No.14 (MBL-36 UBI-10):351356.


Related content

Powered by UNSILO

Increased Situation Awareness in Major Incidents—Radio Frequency Identification (RFID) Technique: A Promising Tool

  • Jorma Jokela (a1), Monica Rådestad (a2) (a3), Dan Gryth (a2) (a3), Helené Nilsson (a4), Anders Rüter (a4) (a5), Leif Svensson (a2) (a3), Ville Harkke (a6), Markku Luoto (a7) and Maaret Castrén (a3) (a8)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.