Skip to main content Accessibility help

Cost: Benefit of Point-of-Care Blood Gas Analysis vs. Laboratory Measurement During Stabilization Prior to Transport

  • Andrew J Macnab (a1), Greg Grant (a1), Kyle Stevens (a2), Faith Gagnon (a3), Robert Noble (a2) and Charles Sun (a4)...



This study was conducted to determine whether point-of-care testing, using the iSTAT Portable Clinical Analyzer, would reduce time at the referring hospital required to stabilize ventilated pediatric patients prior to interfacility, air-medical transport.


The following data were collected prospectively: (1) When a blood gas analysis was ordered; (2) If it was necessary to call in a technician; (3) Waiting time for blood to be drawn; and (4) Waiting time for results. The cost-efficacy of point-of-care testing was calculated based on: (1) Three minutes for a transport team member to draw a sample and obtain a result using the iSTAT (unit cost $CDN8,000); (2) Lab technician call-back (minimum two hours at $90); (3) Paramedic overtime (by the minute at $49/hour); and (4) Cost of charter aircraft wait time ($200 per hour) for every hour beyond four hours.


Data were collected on 46 ventilated patients over a three month period. A blood gas analysis was ordered on 35 patients. Laboratory technicians were called in for 17 (49%). For 12 (34%) patients, there was a wait for the sample to be drawn, and for 23 (66%), there was a wait for results to become available. Total time waiting to obtain laboratory gases was 526 minutes compared with a calculated 105 minutes using point-of-care testing. An iSTAT cartridge cost of $420 would not have been different from laboratory costs. Cost-saving on technician callback ($1,530), paramedic overtime ($690) and aircraft time waiting charges ($2,000) would have totaled ($4,220). From this study, the cost of point-of-care equipment could be recouped in 101 patients if aircraft charges apply or 192 patients if no aircraft costs are involved. For 11 cases, ventilator adjustments were made subsequently during transport, and for six patients, point-of-care testing, if in place, would have been used to optimize transport care.


The data from the present study indicate significant cost-efficacy from use of this technology to reduce stabilization times, and support the potential to improve quality of care during air medical interfacility transport.


Corresponding author

Critical Care Research Office, L317, Children's and Women's Hospital of British Colombia, 4480 Oak Street, Vancouver, British Columbia V6H 3V4, Canada, E-mail:


Hide All
1.Bose, CL: An overview of the organization and administration of a perinatal transport service. In McDonald, MG and Miller, MK (eds.) Emergency Transport of the Perinatal Patient. Little Brown, Boston/Toronto, 1989, pp 3475.
2.Pollack, MM, Alexander, SR, Clark, N, Ruttimann, UE, Tesselaar, HM, Bachulis, AC: Improved outcomes from tertiary pediatric intensive care: A statewide comparison of tertiary and non-tertiary care facilities. Crit Care Med 1991; 19: 150159.
3.Macnab, AJ: Optimal escort for inter-hospital transport for pediatric emergencies. J Trauma 1991; 31(2): 205209.
4.Day, SE: Intratransport stabilization and management of the pediatric patient. Pediatr Clin North Am 1993; 40(2): 263274.
5.Kanter, RK, Tompkins, JM: Adverse events during hospital transport: physiologic deterioration associated with pre-transport severity of illness. Pediatrics 1989; 84: 4348.
6.MacDonald, MG, Gurzburg, HM (eds). Guidelines for Air and Ground Transport of Neonate and Pediatric Patients. American Academy of Pediatrics, Elk Grove, IL; 1999.
7.Whitfield, JM, Buser NNP: Transport stabilization times for neonatal and pediatric patients prior to inter-facility transfer. Pediatr Emerg Care 1993; 9: 6971.
8.Macnab, AJ, Freeman, J, Sun, C: Air evacuation: Costs, benefits and priorities. Br Columbia Med J 1995; 37(4): 251256.
9.Zaloga, GP, Roberts, PR, Black, K, Santamauro, JT, Klass, E, Suleiman, M: Hand-held blood gas analyzer is accurate in the critical care setting. Crit Care Med 1996; 24(6): 957962.
10.Woo, J, McCabe, JB, Chauncey, D, Schug, T, Henry, JB: The evaluation of a portable clinical analyzer in the emergency department. Am J Clin Pathol 1993; 100: 599605.
11.Erickson, KA, Wilding, P: Evaluation of a novel point-of-care system, the iSTAT Portable Clinical Analyzer. Clin Chem 1993; 39(2): 283287.
12.Jacobs, E, Vadasdi, E, Sarkozi, L, Colman, N: Analytical evaluation of iSTAT Portable Clinical Analyzer and use by nonlaboratory health care professionals. Clin Chem 1993; 39(6): 10691074.
13.Burritt, MF, Santrach, PJ, Hankins, DG, Herr, D, Newton, NC: Evaluation of the iSTAT Portable Clinical Analyzer for use in a helicopter. Scand J Clin Lab Invest 1996; 56 (Suppl 24): 121128.
14.Macnab, AJ, Susak, LE, Gagnon, FA, Alred, J, Sun, C: The cost:benefit of pulse-oximeter use in the prehospital environment. Prehosp Disast Med 1999; 14(4): 245250.
15.Doubilet, P, Weinstein, MC, McNeil, BJ: Use and misuse of the term “cost effective” in medicine. N Engl J Med 1986; 314(4): 253256.
16.Shapiro, BA: Evaluation of blood gas monitors: Performance criteria, clinical impact and cost benefit. Crit Care Med 1994; 22(4): 546548.


Cost: Benefit of Point-of-Care Blood Gas Analysis vs. Laboratory Measurement During Stabilization Prior to Transport

  • Andrew J Macnab (a1), Greg Grant (a1), Kyle Stevens (a2), Faith Gagnon (a3), Robert Noble (a2) and Charles Sun (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed