Skip to main content Accessibility help
×
Home

Accuracy of National Early Warning Score 2 (NEWS2) in Prehospital Triage on In-Hospital Early Mortality: A Multi-Center Observational Prospective Cohort Study

  • Francisco Martín-Rodríguez (a1) (a2), Raúl López-Izquierdo (a1) (a3), Carlos del Pozo Vegas (a4), Juan F. Delgado Benito (a2), Virginia Carbajosa Rodríguez (a3), María N. Diego Rasilla (a2), José Luis Martín Conty (a5), Agustín Mayo Iscar (a6), Santiago Otero de la Torre (a2), Violante Méndez Martín (a7) and Miguel A. Castro Villamor (a1)...

Abstract

Introduction:

In cases of mass-casualty incidents (MCIs), triage represents a fundamental tool for the management of and assistance to the wounded, which helps discriminate not only the priority of attention, but also the priority of referral to the most suitable center.

Hypothesis/Problem:

The objective of this study was to evaluate the capacity of different prehospital triage systems based on physiological parameters (Shock Index [SI], Glasgow-Age-Pressure Score [GAP], Revised Trauma Score [RTS], and National Early Warning Score 2 [NEWS2]) to predict early mortality (within 48 hours) from the index event for use in MCIs.

Methods:

This was a longitudinal prospective observational multi-center study on patients who were attended by Advanced Life Support (ALS) units and transferred to the emergency department (ED) of their reference hospital. Collected were: demographic, physiological, and clinical variables; main diagnosis; and data on early mortality. The main outcome variable was mortality from any cause within 48 hours.

Results:

From April 1, 2018 through February 28, 2019, a total of 1,288 patients were included in this study. Of these, 262 (20.3%) participants required assistance for trauma and injuries by external agents. Early mortality within the first 48 hours due to any cause affected 69 patients (5.4%). The system with the best predictive capacity was the NEWS2 with an area under the curve (AUC) of 0.891 (95% CI, 0.84-0.94); a sensitivity of 79.7% (95% CI, 68.8-87.5); and a specificity of 84.5% (95% CI, 82.4-86.4) for a cut-off point of nine points, with a positive likelihood ratio of 5.14 (95% CI, 4.31-6.14) and a negative predictive value of 98.7% (95% CI, 97.8-99.2).

Conclusion:

Prehospital scores of the NEWS2 are easy to obtain and represent a reliable test, which make it an ideal system to help in the initial assessment of high-risk patients, and to determine their level of triage effectively and efficiently. The Prehospital Emergency Medical System (PhEMS) should evaluate the inclusion of the NEWS2 as a triage system, which is especially useful for the second triage (evacuation priority).

Copyright

Corresponding author

Correspondence: Raúl López-Izquierdo, PhD Emergency Department Hospital Universitario Rio Hortega C/ Dulzaina 2. 47012-Valladolid, Spain E-mail: rlopeziz@saludcastillayleon.es

Footnotes

Hide All

(Note: The first and second authors contributed equally to this manuscript.)

Footnotes

References

Hide All
1. Turner, CDA, Lockey, DJ, Rehn, M. Pre-hospital management of mass casualty civilian shootings: a systematic literature review. Crit Care. 2017;21(1):94.
2. Lewis, AM, Sordo, S, Weireter, LJ, et al. Mass casualty incident management preparedness: a survey of the American College of Surgeons Committee on Trauma. Am Surg. 2016;82(12):12271231.
3. Silvestri, S, Field, A, Mangalat, N, et al. Comparison of START and SALT triage methodologies to reference standard definitions and to a field mass casualty simulation. Am J Disaster Med. 2017;12(1):2733.
4. Jain, TN, Ragazzoni, L, Stryhn, H, Stratton, SJ, Della Corte, F. Comparison of the Sacco Triage Method versus START Triage using a virtual reality scenario in advance care paramedic students. CJEM. 2016;18(4):288292.
5. Hart, A, Nammour, E, Mangolds, V, Broach, J. Intuitive versus algorithmic triage. Prehosp Disaster Med. 2018;33(4):355361.
6. Arcos González, P, Castro Delgado, R, Cuartas Alvarez, T, et al. The development and features of the Spanish prehospital advanced triage method (META) for mass casualty incidents. Scand J Trauma Resusc Emerg Med. 2016;24:63.
7. Curran-Sills, G, Franc, JM. A pilot study examining the speed and accuracy of triage for simulated disaster patients in an emergency department setting: comparison of a computerized version of Canadian Triage Acuity Scale (CTAS) and Simple Triage and Rapid Treatment (START) methods. CJEM. 2017;19(5):364371.
8. Galvagno, SM, Massey, M, Bouzat, P, et al. Correlation between the Revised Trauma Score and Injury Severity Score: implications for prehospital trauma triage. Prehosp Emerg Care. 2019;23(2):263270.
9. Sartorius, D, Le Manach, Y, David, JS, et al. Mechanism, Glasgow coma scale, age, and arterial pressure (MGAP): a new simple prehospital triage score to predict mortality in trauma patients. Crit Care Med. 2010;38(3):831837.
10. Cassignol, A, Markarian, T, Cotte, J, et al. Evaluation and comparison of different prehospital triage scores of trauma patients on in-hospital mortality. Prehosp Emerg Care. 2019;23(4):543550.
11. Najafi, Z, Abbaszadeh, A, Zakeri, H, Mirhaghi, A. Determination of mis-triage in trauma patients: a systematic review. Eur J Trauma Emerg Surg. 2019.
12. Massalou, D, Ichai, C, Mariage, D, Baqué, P. Terrorist attack in Nice - the experience of general surgeons. J Visc Surg. 2019;156(1):1722.
13. Wydo, SM, Seamon, MJ, Melanson, SW, Thomas, P, Bahner, DP, Stawicki, SP. Portable ultrasound in disaster triage: a focused review. Eur J Trauma Emerg Surg. 2016;42(2):151159.
14. Shokoohi, H, Pourmand, A, Boniface, K, et al. The utility of point-of-care ultrasound in targeted automobile ramming mass casualty (TARMAC) attacks. Am J Emerg Med. 2018;36(8):14671471.
15. Kost, GJ, Tran, NK, Tuntideelert, M, Kulrattanamaneeporn, S, Peungposop, N. Katrina, the tsunami, and point-of-care testing: optimizing rapid response diagnosis in disasters. Am J Clin Pathol. 2006;126(4):513520.
16. Florkowski, C, Don-Wauchope, A, Gimenez, N, Rodriguez-Capote, K, Wils, J, Zemlin, A. Point-of-care testing (POCT) and evidence-based laboratory medicine (EBLM) - does it leverage any advantage in clinical decision making? Crit Rev Clin Lab Sci. 2017;54(7-8):471494.
17. Léguillier, T, Jouffroy, R, Boisson, M, et al. Lactate POCT in mobile intensive care units for septic patients? A comparison of capillary blood method versus venous blood and plasma-based reference methods. Clin Biochem. 2018;55:914.
18. Lewis, CT, Naumann, DN, Crombie, N, Midwinter, MJ. Prehospital point-of-care lactate following trauma: a systematic review. J Trauma Acute Care Surg. 2016;81(4):748755.
19. Royal-College-of-Physicians. National Early Warning Score (NEWS) 2: Standardizing the Assessment of Acute-Illness Severity in the NHS. Updated Report of a Working Party. London, United Kingdom: RCP; 2017.
20. Silcock, DJ, Corfield, AR, Gowens, PA, Rooney, KD. Validation of the National Early Warning Score in the prehospital setting. Resuscitation. 2015;89:3135.
21. Alam, N, Vegting, IL, Houben, E, et al. Exploring the performance of the National Early Warning Score (NEWS) in a European emergency department. Resuscitation. 2015;90:111115.
22. Hoikka, M, Silfvast, T, Ala-Kokko, TI. Does the prehospital National Early Warning Score predict the short-term mortality of unselected emergency patients? Scand J Trauma Resusc Emerg Med. 2018;26(1):48.
23. Gerry, S, Birks, J, Bonnici, T, Watkinson, PJ, Kirtley, S, Collins, GS. Early warning scores for detecting deterioration in adult hospital patients: a systematic review protocol. BMJ Open. 2017;7(12):e019268.
24. Hoikka, M, Länkimäki, S, Silfvast, T, Ala-Kokko, TI. Medical priority dispatch codes-comparison with National Early Warning Score. Scand J Trauma Resusc Emerg Med. 2016;24(1):142.
25. Abbott, TEF, Cron, N, Vaid, N, Ip, D, Torrance, HDT, Emmanuel, J. Prehospital National Early Warning Score (NEWS) is associated with in-hospital mortality and critical care unit admission: a cohort study. Ann Med Surg (Lond). 2018;27:1721.
26. Downey, CL, Tahir, W, Randell, R, Brown, JM, Jayne, DG. Strengths and limitations of early warning scores: a systematic review and narrative synthesis. Int J Nurs Stud. 2017;76:106119.
27. Shaw, J, Fothergill, RT, Clark, S, Moore, F. Can the prehospital National Early Warning Score identify patients most at risk from subsequent deterioration? Emerg Med J. 2017;34(8):533537.
28. Williams, TA, Tohira, H, Finn, J, Perkins, GD, Ho, KM. The ability of early warning scores (EWS) to detect critical illness in the prehospital setting: a systematic review. Resuscitation. 2016;102:3543.
29. Skitch, S, Tam, B, Xu, M, McInnis, L, Vu, A, Fox-Robichaud, A. Examining the utility of the Hamilton early warning scores (HEWS) at triage: retrospective pilot study in a Canadian emergency department. CJEM. 2018;20(2):266274.
30. Kievlan, DR, Martin-Gill, C, Kahn, JM, et al. External validation of a prehospital risk score for critical illness. Crit Care. 2016;20(1):255.
31. Churpek, MM, Yuen, TC, Winslow, C, et al. Multicenter development and validation of a risk stratification tool for ward patients. Am J Respir Crit Care Med. 2014;190(6):649655.
32. Myint, PK, Sheng, S, Xian, Y, et al. Shock Index predicts patient-related clinical outcomes in stroke. J Am Heart Assoc. 2018;7(18):e007581.
33. Pottecher, J, Ageron, FX, Fauché, C, et al. Prehospital shock index and pulse pressure/heart rate ratio to predict massive transfusion after severe trauma: retrospective analysis of a large regional trauma database. J Trauma Acute Care Surg. 2016;81(4):713722.
34. Köksal, Ö, Torun, G, Ahun, E, Sığırlı, D, Güney, SB, Aydın, MO. The comparison of modified early warning score and Glasgow coma scale-age-systolic blood pressure scores in the assessment of nontraumatic critical patients in emergency department. Niger J Clin Pract. 2016;19(6):761765.
35. Baghi, I, Shokrgozar, L, Herfatkar, MR, Nezhad Ehsan, K, Mohtasham Amiri, Z. Mechanism of injury, Glasgow Coma Scale, age, and systolic blood pressure: a new trauma scoring system to predict mortality in trauma patients. Trauma Mon. 2015;20(3):e2447.
36. Jeong, JH, Park, YJ, Kim, DH, et al. The new trauma score (NTS): a modification of the revised trauma score for better trauma mortality prediction. BMC Surg. 2017;17(1):77.
37. Manoochehry, S, Vafabin, M, Bitaraf, S, Amiri, A. A comparison between the ability of Revised Trauma Score and Kampala Trauma Score in predicting mortality; a meta-analysis. Arch Acad Emerg Med. 2019;7(1):e6.
38. Patel, R, Nugawela, MD, Edwards, HB, et al. Can early warning scores identify deteriorating patients in pre-hospital settings? A systematic review. Resuscitation. 2018;132:101111.
39. Alam, N, Hobbelink, EL, van Tienhoven, AJ, van de Ven, PM, Jansma, EP, Nanayakkara, PWB. The impact of the use of the Early Warning Score (EWS) on patient outcomes: a systematic review. Resuscitation. 2014;85(5):587594.
40. van Rein, EAJ, Houwert, RM, Gunning, AC, Lichtveld, RA, Leenen, LPH, van Heijl, M. Accuracy of prehospital triage protocols in selecting severely injured patients: a systematic review. J Trauma Acute Care Surg. 2017;83(2):328339.
41. Parikh, PP, Parikh, P, Guthrie, B, et al. Impact of triage guidelines on prehospital triage: comparison of guidelines with a statistical model. J Surg Res. 2017;220:255260.
42. van Rein, EAJ, van der Sluijs, R, Houwert, RM, et al. Effectiveness of prehospital trauma triage systems in selecting severely injured patients: is comparative analysis possible? Am J Emerg Med. 2018;36(6):10601069.
43. van Rein, EAJ, van der Sluijs, R, Raaijmaakers, AMR, Leenen, LPH, van Heijl, M. Compliance to prehospital trauma triage protocols worldwide: a systematic review. Injury. 2018;49(8):13731380.
44. Strnad, M, Lesjak, VB, Vujanović, V, Pelcl, T, Križmarić, M. Predictors of mortality and prehospital monitoring limitations in blunt trauma patients. Biomed Res Int. 2015;2015:98340.
45. Ebker-White, A, Bein, KJ, Dinh, MM. Extending the Sydney Triage to Admission Risk Tool (START+) to predict discharges and short stay admissions. Emerg Med J. 2108;35(8):471476.

Keywords

Accuracy of National Early Warning Score 2 (NEWS2) in Prehospital Triage on In-Hospital Early Mortality: A Multi-Center Observational Prospective Cohort Study

  • Francisco Martín-Rodríguez (a1) (a2), Raúl López-Izquierdo (a1) (a3), Carlos del Pozo Vegas (a4), Juan F. Delgado Benito (a2), Virginia Carbajosa Rodríguez (a3), María N. Diego Rasilla (a2), José Luis Martín Conty (a5), Agustín Mayo Iscar (a6), Santiago Otero de la Torre (a2), Violante Méndez Martín (a7) and Miguel A. Castro Villamor (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed