Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-gz6rp Total loading time: 0.207 Render date: 2022-11-29T19:22:14.671Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Comparison of Outcome Tools Used to Test Mass-Casualty Algorithms in the Pediatric Population

Published online by Cambridge University Press:  06 October 2021

J. Joelle Donofrio
Affiliation:
University of California San Diego Departments of Pediatrics and Emergency Medicine, San Diego, CaliforniaUSA Rady Children’s Hospital of San Diego, San Diego, CaliforniaUSA
Alaa Shaban
Affiliation:
California Community Health Centers, Santa Maria, CaliforniaUSA
Amy H. Kaji
Affiliation:
Harbor-UCLA Medical Center, Torrance, CaliforniaUSA; David Geffen School of Medicine at UCLA, Los Angeles, CaliforniaUSA
Genevieve Santillanes
Affiliation:
Keck School of Medicine of University of Southern California, Los Angeles, CaliforniaUSA
Mark X. Cicero
Affiliation:
Yale University School of Medicine, New Haven, ConnecticutUSA
Todd P. Chang
Affiliation:
Children’s Hospital Los Angeles, Los Angeles, CaliforniaUSA
Marianne Gausche-Hill
Affiliation:
Harbor-UCLA Medical Center, Torrance, CaliforniaUSA; David Geffen School of Medicine at UCLA, Los Angeles, CaliforniaUSA Los Angeles County Emergency Medical Services Agency, Los Angeles, CaliforniaUSA
Ilene A. Claudius*
Affiliation:
Harbor-UCLA Medical Center, Torrance, CaliforniaUSA; David Geffen School of Medicine at UCLA, Los Angeles, CaliforniaUSA
*
Correspondence: Ilene Claudius, MD 1000 W. Carson, Department of Emergency Medicine D9 Torrance, California90509USA E-mail: iaclaudius@gmail.com

Abstract

Introduction:

Mass-casualty incident (MCI) algorithms are used to sort large numbers of patients rapidly into four basic categories based on severity. To date, there is no consensus on the best method to test the accuracy of an MCI algorithm in the pediatric population, nor on the agreement between different tools designed for this purpose.

Study Objective:

This study is to compare agreement between the Criteria Outcomes Tool (COT) to previously published outcomes tools in assessing the triage category applied to a simulated set of pediatric MCI patients.

Methods:

An MCI triage category (black, red, yellow, and green) was applied to patients from a pre-collected retrospective cohort of pediatric patients under 14 years of age brought in as a trauma activation to a Level I trauma center from July 2010 through November 2013 using each of the following outcome measures: COT, modified Baxt score, modified Baxt combined with mortality and/or length-of-stay (LOS), ambulatory status, mortality alone, and Injury Severity Score (ISS). Descriptive statistics were applied to determine agreement between tools.

Results:

A total of 247 patients were included, ranging from 25 days to 13 years of age. The outcome of mortality had 100% agreement with the COT black. The “modified Baxt positive and alive” outcome had the highest agreement with COT red (65%). All yellow outcomes had 47%-53% agreement with COT yellow. “Modified Baxt negative and <24 hours LOS” had the highest agreement with the COT green at 89%.

Conclusions:

Assessment of algorithms for triaging pediatric MCI patients is complicated by the lack of a gold standard outcome tool and variability between existing measures.

Type
Original Research
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of the World Association for Disaster and Emergency Medicine

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Garner, A, Lee, A, Harrison, K, Schultz, CH. Comparative analysis of multiple-casualty incident triage algorithms. Ann Emerg Med. 2001;38(5):541548.CrossRefGoogle ScholarPubMed
Baxt, WG, Upenieks, V. The lack of full correlation between the Injury Severity Score and the resource needs of injured patients. YMEM. 1990;19(12):13961400.Google ScholarPubMed
Challen, K, Walter, D. Major incident triage: comparative validation using data from 7th July bombings. Injury. 2013;44(5):629633.CrossRefGoogle ScholarPubMed
Wallis, LA, Carley, S. Validation of the pediatric triage tape. Emerg Med J. 2006;23(1):4750.CrossRefGoogle ScholarPubMed
Wallis, LA. Comparison of pediatric major incident primary triage tools. Emerg Med J. 2006;23(6):475478.CrossRefGoogle ScholarPubMed
Kahn, CA, Schultz, CH, Miller, KT, Anderson, CL. Does START triage work? An outcomes assessment after a disaster. YMEM. 2009;54(3):424430.Google Scholar
Price, CL, Brace-McDonnell, SJ, Stallard, N, Bleetman, A, Maconochie, I, Perkins, GD. Performance characteristics of five triage tools for major incidents involving traumatic injuries to children. Injury. 2016;47(5):988992.CrossRefGoogle ScholarPubMed
Cross, KP, Cicero, MX. Head-to-head comparison of disaster triage methods in pediatric, adult, and geriatric patients. YMEM. 2013;61(6):668676.Google ScholarPubMed
Cross, KP, Petry, MJ, Cicero, MX. A better START for low-acuity victims: data-driven refinement of mass casualty triage. Prehosp Emerg Care. 2014;19(2):272278.CrossRefGoogle ScholarPubMed
Donofrio, JJ, Kaji, AH, Claudius, IA, et al. Development of a pediatric mass casualty triage algorithm validation tool. Prehosp Emerg Care. 2016;20(3):343353.CrossRefGoogle ScholarPubMed
Supplementary material: File

Donofrio et al. supplementary material

Donofrio et al. supplementary material

Download Donofrio et al. supplementary material(File)
File 17 KB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Comparison of Outcome Tools Used to Test Mass-Casualty Algorithms in the Pediatric Population
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Comparison of Outcome Tools Used to Test Mass-Casualty Algorithms in the Pediatric Population
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Comparison of Outcome Tools Used to Test Mass-Casualty Algorithms in the Pediatric Population
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *