Skip to main content Accessibility help
×
Home

X-ray powder reference patterns of the Fe(Sb2+ x Te1− x ) skutterudites for thermoelectric applications

  • W. Wong-Ng (a1), J.A. Kaduk (a2), G. Tan (a3), Y. Yan (a3) and X. Tang (a3)...

Abstract

The crystal structure and powder X-ray diffraction (XRD) patterns for three skutterudite samples, Fe(Sb2+ x Te1− x ), x = 0.05, 0.10, 0.20, have been determined. These compounds crystallize in the cubic space group $Im\bar 3$ . Te was found to randomly substitute in the Sb site. Because of the fact the covalent radius of Sb is greater than that of Te, a trend of increasing lattice parameter has been observed as the x value in Fe(Sb2+ x Te1− x ) increases [cell parameters range from 9.10432(4) to 9.11120(3) Å for x = 0.0 to 0.2, respectively]. The Fe–Sb/Te bond distance also increases progressively [from 2.5358(4) to 2.5388(4) Å] as the Te content decreases. While average Sb/Te–Sb/Te distances in the four-membered rings are similar in these three compounds, the average Sb/Te–Sb/Te edge distances in the octahedral framework increase progressively from 3.5845(12) to 3.5900(13) Å. Reference XRD patterns of these three phases have been prepared to be included in the Powder Diffraction File (PDF).

Copyright

Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

References

Hide All
Fleurial, J. P., Caillat, T., and Borshchevsky, A. (1997a). Skutterudites: an update, in Proceedings of the 16th International Conference on Thermoelectrics, (IEEE, Piscataway, NJ) p. 1–11.
Fleurial, J. P., Caillat, T., and Borshchevsky, A. (1997b). “Low thermal conductivity skutterudites,” MRS Proc. 478, 175. doi: 10.1557/PROC-478-175.
Kjekshus, A., Nicholson, D. G., and Rakke, T. (1973). “Compounds with the skutterudite type crystal structure. I. On Oftedal's relation,” Acta Chem. Scand. 27, 13071314.
Kjekshus, A., Nicholson, D. G., and Rakke, T. (1974). “Compounds with the skutterudite type crystal structure. III. structural data for arsenides and antimonides,” Acta Chem. Scand. A28, 99103.
Larson, A. C. and von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86–748, Los Alamos, USA: Los Alamos National Laboratory.
Laufek, F. and Navrátil, J. (2010). “Crystallographic study of ternary ordered skutterudite IrGe1.5Se1.5 ,” Powder Diffr. 25, 247252.
Laufek, F. and Navrátil, J. (2011). “Synthesis and Rietveld refinement of the ternary skutterudite RuSb2Te,” Powder Diffr. 26, 331334.
Laufek, F., Navrátil, J., Plašil, J., Plechĉcek, T., and Draŝar, Ĉ. (2009). “Synthesis, crystal structure and transport properties of skutterudite-related CoSn1.5Se1.5 ,” J. Alloys Compd. 479, 102106.
Li, X. Y., Chen, L. D., Fan, J. F., Zhang, W. B., Kawahara, T., and Hirai, J. (2005). “Thermoelectric properties of Te-doped CoSb3 by spark plasma sintering,” Appl. Phys. 98, 083702.
Liu, W. S., Zhang, B. P., Zhao, L. D., and Li, J. F. (2008). “Improvement of thermoelectric performance of CoSb3− x Te x skutterudite compounds by additional substitution of IVB-group elements for Sb,” Chem. Mater., 20, 75267531.
Navrátil, J., Laufek, F., Plcháček, T., and Drašar, Č. (2012). “Thermoelectric properties of the Ru2Ni2Sb12 ternary skutterudite,” J. Solid State Chem., 193, 27.
Nolas, G. S., Sharp, J., and Goldsmid, H. J. (2001). Thermoelectric: Basic Principles and New Materials Developments (Springer, New York).
Oftedal, I. (1928). “The crystal structure of skutterudite and smaltite-chloanthite,” Z. Kristallogr. A66, 517.
Powder Diffraction File (2014). Produced by International Centre for Diffraction Data, 12 Campus Blvd., Newtown Squares, PA. 19073-3273, USA.
Prytz, Ø. (2007). “Electronic structure and bonding in thermoelectric skutterudites,” PhD thesis, Physics Department, University of Oslo.
Pyykko, P. and Atsumi, M. (2009). “Molecular single-bond covalent radii for elements 1–118,” Chem. Eur. J. 15 (1), 186.
Rietveld, H. M. (1969) “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.
Sales, B. C. (2003). Handbook on the Physics and Chemistry of Rare-Earths (Elsevier Science, Amsterdam), Vol. 33, p. 1.
Su, X., Li, H., Yan, Y., Wang, G., Chi, H., Zhou, X., Tang, X., Zhang, Q., and Uher, C. (2012). “Microstructure and thermoelectric properties of CoSb2.75Ge0.25- x Te x prepared by rapid solidification,” Acta Mater. 60, 35363544.
Tan, G., Liu, W., Chi, H., Su, X., Wang, S., Yan, Y., Tang, X., Wong-Ng, W., and Uher, C. (2013). “Realization of high thermoelectric performance in p-type unfilled ternary skutterudites FeSb2+ x Te1− x via band structure modification and significant point defect scattering,” Acta Mater., 61, 76937704.
Vaqueiro, P., Sobany, G. G., Powell, A. V., and Knight, K. S. (2006). “Structure and thermoelectric properties of the ordered skutterudite CoGe1.5Te1.5,” J. Solid State Chem. 179, 20472053.
Yan, Y. G., Wong-Ng, W., Li, L., Levin, I., Kaduk, J. A., Suchomel, M. R., Sun, X., Tan, G. J., and Tang, X. F. (2014). “Structures and thermoelectric properties of double-filled (Ca x Ce1− x )Fe4Sb12 skutterudites,” J. Appl. Phys. (2014, submitted).
Yang, J., Qiu, P., Liu, R., Xi, L., Zheng, S., Zhang, W., Chen, L., Singh, D. J., Yang, J. (2011). “Trends in electrical transport of p-type skutterudites RFe4Sb12 (R = Na, K, Ca, Sr, Ba, La, Ce, Pr, Yb) from first-principles calculations and Boltzmann transport theory,” Phys. Rev. B 84, 235205.

Keywords

Related content

Powered by UNSILO

X-ray powder reference patterns of the Fe(Sb2+ x Te1− x ) skutterudites for thermoelectric applications

  • W. Wong-Ng (a1), J.A. Kaduk (a2), G. Tan (a3), Y. Yan (a3) and X. Tang (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.