Skip to main content Accessibility help

X-ray powder diffraction studies of (Ba x Sr1− x )2Co2Fe12O22 and (Ba x Sr1− x )Co2Fe16O27

  • W. Wong-Ng (a1), G. Liu (a2), Y. Yan (a3), K. R. Talley (a4) and J. A. Kaduk (a5)...


X-ray structural characterization and X-ray reference powder patterns have been determined for two series of iron- and cobalt-containing layered compounds (Ba x Sr1− x )2Co2Fe12O22 (x = 0.2, 0.4, 0.6, 0.8) and (Ba x Sr1− x )Co2Fe16O27 (x = 0.2, 0.4, 0.6, 0.8). The (Ba x Sr1− x )2Co2Fe12O22 series of compounds crystallized in the space group R $\bar 3$ m (No. 166), with Z = 3. The structure is essentially that of the Y-type hexagonal ferrite, BaM 2+Fe6 3+O11. The lattice parameters range from a = 5.859 15(8) to 5.843 72(8) Å, and c = 43.4975(9) to 43.3516(9) Å for x = 0.2 to 0.8, respectively. The (Ba x Sr1− x )Co2Fe16O27 series (W-type hexagonal ferrite) crystallized in the space group P63/mmc (No. 194) and Z = 2. The lattice parameters range from a = 5.902 05(12) to 5.8979(2) Å and c = 32.9002(10) to 32.8110(13) Å for x = 0.2 to 0.8. Results of measurements of the Seebeck coefficient and resistivity of these two sets of samples indicated that they are insulators. Powder X-ray diffraction patterns of these two series of compounds have been submitted to be included in the Powder Diffraction File.


Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail:


Hide All
Bashkirov, L. A., Dudchik, G. P., But`ko, T. A., Kris`ko, L. V., Kunitskii, L. I., Petrov, G. S., Shershavina, A. A., Shichkova, T. A., and Fedorova, G. Y. (2001). “Ba–Sr and Ni–Co solid-state interdiffusion in the hexagonal -ferrites Ba2M2Fe12O22 and Sr2M2Fe126O22 (M = Ni2+, Co2+),” Inorg. Mater. (Engl. Transl.) 37, 737743.
Braun, P. B. (1956). “The crystal structures of a new group of ferromagnetic compounds,” Philips Res. Rep. 12, 491.
Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database,” Acta Crystallogr. B 41, 244247.
Collomb, A., Wolfers, P., and Obradors, X. (1986a). “Neutron diffraction studies of some hexagonal ferrites: BaFe12O19, BaMg2-W and BaCo2-W,” J. Magn. Magn. Mater. 62, 67.
Collomb, A., LambertAndron, B., Boucherle, J., and Samaras, D. (1986b). “Crystal structure and cobalt location in the W-type hexagonal ferrite (Ba)Co2-W,” Phys. Status Solidi A 96, 385395.
Collomb, A., Abdelkader, O., Wolfers, P., Guitel, J. C., and Samaras, D. (1986c). “Crystal structure and magnesium location in the W-type hexagonal ferrite: [Ba]Mg2-W,” J. Magn. Magn. Mater. 58, 247253.
Collomb, A., Hadj Farhat, M. A., and Joubert, J. C. (1989a). “Cobalt location in the Y-type hexagonal ferrite: BaCoFe6O11 ,” Mat. Res. Bull. 24, 453458.
Collomb, A., Muller, J., Guitel, J. C., and Desvignes, J. M. (1989b). “Crystal structure and zinc location in the BaZnFe6O11 Y-type hexagonal ferrite,” J. Magn. Magn. Mater. 78, 7784.
Grebille, D., Lambert, S., Bourée, F., and Petricek, V. (2004). “Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides,” J. Appl. Crystallogr. 37, 823831.
Howard, C. J. (1982). “The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians,” J. Appl. Crystallogr. 15 (6), 615620.
Hu, Y. F., Si, W. D., Sutter, E., and Li, Q. (2005). “ In-situ growth of c-axis- oriented Ca3Co4O9 thin films on Si(100),” Appl. Phys. Lett. 86, 082103.
Larson, A. C. and von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Los Alamos, USA: Los Alamos National Laboratory Report LAUR 86748.
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., and Raveau, B. (2000). “Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9 ,” Phys. Rev. B 62, 166175.
Mikami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H., and Lippmaa, M. (2002). “Rapid synthesis and characterization of (Ca1− x Ba x )3Co4O9 thin films using combinatorial methods,” Appl. Surf. Sci. 197, 442447.
Mikami, M. and Funahashi, R. (2005). “The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds,” J. Solid State Chem. 178, 16701674.
Mikami, M., Funahashi, R., Yoshimura, M., Mori, Y., and Sasaki, T. (2003). “High-temperature thermoelectric properties of single-crystal Ca3Co2O6 ,” J. Appl. Phys. 94(10), 65796582.
Naiden, E. P., Maltsev, V. I., and Ryabtsev, G. I. (1990). “Magnetic structure and spin-orientational transitions of hexaferrites of the BaCo2− x Zn x Fe16O27 system,” Phys. Status Solidi A 120, 209.
Nolas, G. S., Sharp, J., and Goldsmid, H. J. (2001). Thermoelectric: Basic Principles and New Materials Developments (Springer, New York).
Powder Diffraction File (PDF) (2015), produced by International Centre for Diffraction Data, 12 Campus Blvd., Newtown Squares, PA. 19073-3273, USA.
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides,” Acta Crystallogr. A 32, 751767.
Shin, H. S. and Kwon, S.-J. (1993). “X-ray powder diffraction patterns of two Y-type hexagonal ferrites,” Powder Diffr. 8, 98101.
Sugimoto, M. (1982). Ferromagnetic Materials (North-Holland Publ. Co., Amsterdam), Vol. 3, p. 303.
Terasaki, I., Sasago, Y., and Uchinokura, K. (1997). “Large thermoelectric power in NaCo2O4 single crystals,” Phys. Rev. B 56, 1268512687.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 ,” J. Appl. Crystallogr. 20, 7983.
Townes, W. D. and Fang, J. H. (1970). “Refinement of the crystal structure of Ba2Zn2Fe12O22 ,” Z. Kristallogr. 131, 196205.
Vinnik, M. A. (1965). “Phase relationships in the BaO–CoO–Fe2O3 system,” Russ. J. Inorg. Chem. 10(9), 1164.
Vinnik, M. A., Agranovskaya, A. I., and Erastova, A. P. (1966). “Strontium-, lead-, and barium-based hexaferrites,” Inorg. Mater. (Engl. Transl.) 2, 1383.
Wang, S., Venimadhav, A., Guo, S., Chen, K., Li, Q., Soukiassian, A., Schlom, D. G., Pan, X. Q., Wong-Ng, W., Vaudin, M. D., Cahill, D. G., and Xi, X. X. (2009). “Structural and thermoelectric properties of Bi2Sr2Co2Oy thin films on LaAlO3 (100) and fused silica substrates,” Appl. Phys. Lett. 94, 022110.
Wong-Ng, W., Hu, Y. F., Vaudin, M. D., He, B., Otani, M., Lowhorn, N. D., and Li, Q. (2007). “Texture analysis of a Ca3Co4O9 thermoelectric film on Si (100) substrate,” J. Appl. Phys. 102(3), 33520.
Wong-Ng, W., Liu, G., Martin, J., Thomas, E., Lowhorn, N., and Otani, M. (2010). “Phase compatibility of the thermoelectric compounds in the Sr–Ca–Co–O system,” J. Appl. Phys. 107, 033508.
Wong-Ng, W., Luo, T., Tang, M., Xie, M., Kaduk, J. A., Huang, Q., Yang, Y., Tang, M., and Tritt, T. (2011). “Crystal chemistry and thermoelectric properties of compounds in the Ca-Co-Zn-O system,” J. Solid State Chem. 184(8), 2159.
Wong-Ng, W., Laws, W., and Yan, Y. G. (2013). “Phase diagram and crystal chemistry of the La–Ca–Co–O system,” Solid State Sci. 17, 107110.
Wong-Ng, W., Laws, W., Talley, K. R., Huang, Q., Yan, J., and Kaduk, J. A. (2014). “Phase equilibria and crystal chemistry of the CaO–½Nd2O3–CoOz system at 885 °C in air,” J. Solid State Chem. 215, 128134.
Yan, Y. G., Martin, J., Wong-Ng, W., Green, M., and Tang, X. F. (2013). “A temperature dependent screening tool for high throughput thermoelectric characterization of combinatorial films,” Sci. Rev. Instrum. 84, 115110.


Related content

Powered by UNSILO

X-ray powder diffraction studies of (Ba x Sr1− x )2Co2Fe12O22 and (Ba x Sr1− x )Co2Fe16O27

  • W. Wong-Ng (a1), G. Liu (a2), Y. Yan (a3), K. R. Talley (a4) and J. A. Kaduk (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.