Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T14:19:33.513Z Has data issue: false hasContentIssue false

X-ray powder diffraction data and thermal stability of a new high temperature phase of NaBi3V2O10

Published online by Cambridge University Press:  01 March 2012

S. J. Patwe
Affiliation:
Applied Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
S. N. Achary
Affiliation:
Applied Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
A. K. Tyagi*
Affiliation:
Applied Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
*
a)Author to whom correspondence should be addressed. Electronic mail: aktyagi@magnum.barc.ernet.in

Abstract

X-ray powder diffraction data for the high temperature phase of NaBi3V2O10 obtained from in situ high temperature XRD studies are presented. NaBi3V2O10 undergoes a phase transition from triclinic to monoclinic at about 600 °C. The unit cell parameters of the high temperature monoclinic phase at 600 °C are: a=12.3899(21), b=5.5642(10), c=7.1543(18) Å and β=98.393(16)°, V=487.94(13) Å3 and Z=2, ρcal=6.20 g∕cc. On further increasing the temperature, it partially decomposes to a γ-Bi4V2O11 type phase. The details of this phase as well as the stability of NaBi3V2O10 are discussed.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, F., Boivin, J. C., Mairesse, G., and Nowogrocki, G. (1990). “The BIMEVOX series: A new family of high performances oxide ion conductors,” Solid State Ionics SSIOD3 40–41, 934937.CrossRefGoogle Scholar
Abraham, F., Debreuille-Gresse, M. F., Mairesse, G., and Nowogrocki, G. (1988). “Phase transition and ionic conductivity in Bi4V2O11, an oxide with layered structure,” Solid State Ionics SSIOD3 28–30, 529532.CrossRefGoogle Scholar
Achary, S. N., Patwe, S. J., and Tyagi, A. K. (2002). “Preparation and characterization of Ca2Bi6V4O21: A new compound in Ca-Bi-V-O system,” Mater. Chem. Phys. MCHPDR 73, 186192.CrossRefGoogle Scholar
Bliesner, R., Uma, S., Yokochi, A., and Sleight, A. W. (2001). “Structure of NaBi 3V2O10 and implications for ionic conductivity,” Chem. Mater. CMATEX 13, 38253826.CrossRefGoogle Scholar
Boivin, J. C. and Mairesse, G. (1998). “Recent materials developments in fast oxide ion conductors,” Chem. Mater. CMATEX 10, 28702888.CrossRefGoogle Scholar
Boje, J. and Muller-Buschbaum, H. (1993). “Synthesis and crystal structure of CaBiVO 5,” Z. Anorg. Allg. Chem. ZAACAB 619, 521524.CrossRefGoogle Scholar
Joubert, O., Jouanneaux, A., and Ganne, M. (1994). “Crystal structure of low-temperature form of bismuth vanadium oxide determined by Rietveld refinement of x-ray and neutron diffraction data,” Mater. Res. Bull. MRBUAC 29, 175184.CrossRefGoogle Scholar
Lee, C. K., Bay, B. H., and West, A. R. (1996). “New oxide ion conducting solid electrolyte Bi4V2O11: M, M=B, Al, Cr, Y, and La,” J. Mater. Chem. JMACEP 6, 331335.CrossRefGoogle Scholar
Lee, C. K., Lim, G. S., and West, A. R. (1994). “Phase diagrams and stoichiometries of the solid electrolytes, Bi4V2O11: M, M=CO, Cu, Zn, Ca, Sr,” J. Mater. Chem. JMACEP 4, 14411444.CrossRefGoogle Scholar
Porob, D. G. and Guru Row, T. N. (2000). “A novel oxide ion conductor in a doped Bi2O3-V2O5 system: Ab initio structure of a new poly-morph of NaBi 3V2O10 via powder x-ray diffraction,” Chem. Mater. CMATEX 12, 36583661.CrossRefGoogle Scholar
Radosavljevic, I., Evans, J. S. O., and Sleight, A. W. (1998). “Synthesis and structure of BiCa 2VO 6,” J. Solid State Chem. JSSCBI 137, 143147.CrossRefGoogle Scholar
Radosavljevic, I., Howard, J. A. K., Sleight, A. W., and Evans, J. S. O. (2000). “Synthesis and structure of Bi3Ca9V11O41,” J. Mater. Chem. JMACEP 10, 20912095.CrossRefGoogle Scholar
Simner, S. P., Sandoval, D. S., Mackenzie, J. D., and Dunn, B. (1997). “Synthesis, densification and conductivity characterization of BICUVOX oxygen-ion-conducting ceramics,” J. Am. Ceram. Soc. JACTAW 80, 25632568.CrossRefGoogle Scholar
Sinclair, D. C., Marinou, E., and Skakle, J. M. S. (1999). “The crystal structure of a new oxide ion conductor NaBi 3V2O10 and oxide ion conductivity of Pb 2Bi2V2O10,” J. Mater. Chem. JMACEP 9, 26172621.CrossRefGoogle Scholar
Sinclair, D. C., Watson, C. J., Howie, R. A., Skakle, J. M. S., Coats, A. M., Kirk, C. A., Lachowski, E. E., and Marr, J. (1998). “NaBi 3V2O10 A new oxide ion conductor,” J. Mater. Chem. JMACEP 8, 281283.CrossRefGoogle Scholar
Sooryanarayana, K., Guru Row, T. N., and Varma, K. B. R. (1997). “Crystal structure of ferroelectric Bi2VO 5.5,” Mater. Res. Bull. MRBUAC 32, 16511656.CrossRefGoogle Scholar
Touboul, M., Lokaj, J., Tessier, L., Kettman, V., and Vrabel, V. (1992). “Structure of dibismuth vanadate Bi2VO 5.5,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE C48, 1176.CrossRefGoogle Scholar