Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T00:42:28.026Z Has data issue: false hasContentIssue false

X-ray powder diffraction characterization of the large-volume unit cell of the M8 murataite polytype

Published online by Cambridge University Press:  17 February 2016

Ryosuke S. S. Maki
Affiliation:
Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
Peter E. D. Morgan
Affiliation:
Department of Chemical Engineering and Materials Science, University of California Irvine, California 92697
Yoshikazu Suzuki*
Affiliation:
Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
*
a)Author to whom correspondence should be addressed. Electronic mail: suzuki@ims.tsukuba.ac.jp

Abstract

We have used conventional X-ray powder diffraction to study one of the largest volume inorganic mixed oxide unit-supercell structures done so far. This necessitated some small-angle X-ray scattering-like observations at low angles from <2° 2θ to concord with electron diffraction, which had indicated an 8 × 8 × 8 huge volume supercell of a fluorite-type basic sub-cell. Emphasis is on the detection of, possibly very weak, fingerprint, low-angle/long lines/peaks which will indicate the (often unsuspected) presence of complex polytypic arrangements of simple very strong basic sub-cells and so facilitate future synthetic studies.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. W., Botinelly, T., Sharp, W. N., and Robinson, K. (1974). “Murataite, a new complex oxide from El Paso County, Colorado,” Am. Mineral. 59, 172176.Google Scholar
Aken, B. B. V., Meetsma, A., and Pastra, T. T. M. (2001). “Hexagonal YbMnO3 revisited,” Acta Crystallogr. 57, i87i89.Google Scholar
Aliev, A., Kovrugin, V. M., Colmont, M., Terryn, C., Huve, M., Siidra, O. I., Krivovichev, S. V., and Mentre, O. (2014). “Revised bismuth chloroselenite system: evidence of a non-centrosymmetric structure with a giant unit cell,” Cryst. Growth Des. 14, 30263034.Google Scholar
Ercit, T. S. and Hawthorne, F. C. (1995). “Murataite, a UB12 derivative structure with condensed kegging molecules,” Can. Mineral. 33, 12231229.Google Scholar
Gatehouse, B. M., Grey, L. N., Lovering, J. F., and Wark, D. A. (1977). “Structure studies on tranquillityite and related synthetic phases,” Proc. Lunar Science Conf. 2, 18311838.Google Scholar
ICDD-JCPDS (1984). “Powder Diffraction File #34-0167, Zirconolite-2M (Calcium Zirconium Titanium Oxide), CaZrTi2O7”.Google Scholar
ICDD-JCPDS (1986). “Powder Diffraction File #36-0138, Calcium Iron Aluminum Titanium Manganese Zirconium Oxide, ZrMn0.8Ca1.2Ti3Fe2.5Al1.5O16”.Google Scholar
ICDD-JCPDS (1991). “Powder Diffraction File #41-1432, Pseudobrookite, syn, Fe2TiO5”.Google Scholar
Kasunič, M., Meden, A., Škapin, S. D., Suvorov, D., and Golobič, A. (2011). “Structure of LaTi2Al9O19 and reanalysis of the crystal structure of La3Ti5Al15O37 ,” Acta Crystallogr. B 67, 455460.Google Scholar
Laverov, N. P., Yudintsev, S. V., Omel'yanenko, B. I., Nikonov, B. S., and Stefanovskii, S. V. (1999). “Murataite ceramics for the immobilization of actinides,” Geol. Ore Deposits 41, 8593.Google Scholar
Laverov, N. P., Yudintsev, S. V., Stefanovsky, S. V., Omel'yaneko, B. I., and Nikonov, B. S. (2006). “Murataite as a universal matrix for immobilization of actinides,” Geol. Ore Deposits 48, 335356.Google Scholar
Laverov, N. P., Urusov, V. S., Krivovichev, S. V., Pakhomova, A. S., Stefanovsky, S. V., and Yudintsev, S. V. (2011a). “Modular Nature of the Polysomatic Pyrochlore-Murataite Series,” Geol. Ore Deposits 53, 273294.Google Scholar
Laverov, N. P., Yudintsev, S. V., Stefanovskii, S. V., Omel'yanenko, B. I., and Nikonov, B. S. (2011b). “Murataite matrices for actinide wastes,” Radiochemistry 53, 229243.Google Scholar
Lin, J., Sheptyakov, D., Wang, Y., and Allenspach, P. (2004). “Structures and phase transition of vaterite-type rare earth orthoborates: a neutron diffraction study,” Chem. Mater. 16, 24182424.Google Scholar
Morgan, P. E. D. (1984). “Preparing new extremely difficult-to-form crystal structures,” Mater. Res. Bull. 19, 369376.Google Scholar
Morgan, P. E. D. and Ryerson, F. J. (1982). “A new “cubic” crystal compound,” J. Mater. Sci. Lett. 1, 351352.Google Scholar
Morgan, P. E. D., Carrol, P. J., and Lange, F. F. (1977). “Crystal structure of YSiO2N and a reappraisal of the “vaterite” type, YBO3 ,” Mater. Res. Bull. 12, 251260.Google Scholar
Morgan, P. E. D., Harker, A. B., and Flintoff, J. F. (1984). “Developments in SRP “composite” defense ceramic radwaste forms,” Adv. Ceram. 8, 234246.Google Scholar
Morris, R. E., Owen, J. J., Stalick, J. K., and Cheetham, A. K. (1994). “Determination of Complex Structures from Powder diffraction data: the crystal structure of La3Ti5Al15O37 ,” J. Solid State Chem. 111, 5257.Google Scholar
Pakhomova, A. S., Krivovichev, S. V., Yudintsev, S. V., and Stefanovsky, S. V. (2013). “Synthesis murataite-3C, a complex form for long-term immobilization of nuclear waste: crystal structure and its comparison with natural analogues,” Z. Kristallogr. 228, 151156.Google Scholar
Pitscheider, A., Kaindl, R., Oeckler, O., and Huppertz, H. (2011). “The crystal structure of π-EuBO3: new single-crystal data for an old problem,” J. Solid State Chem. 184, 149153.Google Scholar
Strunk, M. and Müller-Buschbaum, V. (1993). “Zur kristallstruktur von SrAl8Ti3O19 ,” J. Alloy Compd. 198, 101104.Google Scholar
Urusov, V. S., Organova, N. I., Karimova, O. V., Yudintsev, S. V., and Ewing, R. C. (2007). “A modular model of the crystal structure of the pyrochlore-murataite polysomatic series,” Crystallogr. Rep. 52, 3746.Google Scholar
Yang, H., and Prewitt, C. T. (1999). “On the crystal structure of pseudowollastonite (CaSiO3),” Am. Mineral. 84, 929932.Google Scholar
Supplementary material: File

Maki supplementary material

Maki supplementary material 1

Download Maki supplementary material(File)
File 17.2 KB
Supplementary material: File

Maki supplementary material

Maki supplementary material 2

Download Maki supplementary material(File)
File 333.4 KB