Skip to main content Accessibility help
×
Home

Thermally-induced stresses in thin aluminum layers grown on silicon

  • E. Eiper (a1), R. Resel (a2), C. Eisenmenger-Sittner (a3), M. Hafok (a4) and J. Keckes (a4)...

Abstract

Elevated-temperature X-ray diffraction (XRD) was used to evaluate residual stresses in aluminum thin films on Si(100). The films with a thickness of 2 μm were deposited by magnetron sputtering at different temperatures, and XRD measurements were carried out with the heating stage DHS 900 mounted on a Seifert 3000 PTS diffractometer. The strains were characterized always in temperature cycles from room temperature up to 450 °C with steps of 50 °C. Stress values in weakly textured thin films were calculated using the Hill model, applying temperature-dependent X-ray elastic constants of aluminum. The thin films exhibit specific temperature hysteresis of stresses depending on the deposition temperature (being from the range of 50 °C–300 °C). The results allow us to quantify contributions of intrinsic and extrinsic stresses to the total stress in the layers as well as to evaluate phenomena related to plastic yield. The comparison of the data from thin films deposited at different temperatures indicate a dependence of intrinsic stresses on the substrate temperature during deposition as well as the presence of the plastic yield in films during the cool-down after deposition

Copyright

Corresponding author

a)Author to whom correspondence should be addressed; Electronic mail: ernst.eiper@unileoben.ac.at

References

Hide All
Atar, E., Sarioglu, C., Demirler, U., Sabri Kayali, E., and Cimenoglu, H. (2002). Scr. Mater. SCMAF7 48, 13311336. scz, SCMAF7
Callister, W. D. Jr. (1999). Materials Science and Engineering: An Introduction, 5th ed. (Wiley, New York).
Chidambarrao, D., Rodbell, I. P., Thouless, E. M. D., and DeHaven, P. W. (1994). Materials Reliability in Microelectronics (IV), Symposium, pp. 261–268.
Eiper, E., Thesis, University of Technology, Graz-Austria, January 2003.
King, H. W., Ferguson, S. H., Gursan, S., and Yildiz, M. (2002). Adv. X-Ray Anal. AXRAAA 45, 232237. axr, AXRAAA
Kraft, O., Hommel, M., and Arzt, E. (2000). Mater. Sci. Eng., A MSAPE3 288, 209216. msa, MSAPE3
Kuschke, W. M.and Arzt, E. (1994). Appl. Phys. Lett. APPLAB 64, 10971099. apl, APPLAB
Lee, S.-H., Bravman, J. C., Doan, J. C., Lee, S., and Marieb, T. N. (2002). J. Appl. Phys. JAPIAU 91, 6. jap, JAPIAU
Lide, D. R. (1995–1996). Handbook of Chemistry and Physics, 76th ed., Vol. 12, p. 190.
Ma, C. H., Huang, J.-H., and Chen, H. (2002). Thin Solid Films THSFAP 418, 7378. tsf, THSFAP
Nix, W. D. (1989). Metall. Trans. A MTTABN 20A, 2217. mta, MTTABN
Resel, R., Tamas, E., Sonderegger, B., Hofbauer, P., and Keckes, J. (2003). J. Appl. Crystallogr. JACGAR 36, 8085. acr, JACGAR
Thouless, M. D. (1993). Acta Metall. Mater. AMATEB 41, 10571064. amm, AMATEB
van Houtta, P.and de Byser, L. (1993). Acta Metall. Mater. AMATEB 41, 2. amm, AMATEB
van Leauwen, M., Kamminga, J.-D., and Mittermeijer, E. J. (1999). J. Appl. Phys. JAPIAU 86, 4. jap, JAPIAU
Venkatraman, R.and Bravmann, J. C. (1992). J. Mater. Res. JMREEE 7, 20402048. jmr, JMREEE
Vook, R. W.and Wirr, F. (1965). J. Appl. Phys. JAPIAU 36, 7. jap, JAPIAU
Zhan, Z. B., Hershberger, J., Yalisove, S. M., and Billelo, J. C. (2002). Thin Solid Films THSFAP 415, 21,31. tsf, THSFAP

Thermally-induced stresses in thin aluminum layers grown on silicon

  • E. Eiper (a1), R. Resel (a2), C. Eisenmenger-Sittner (a3), M. Hafok (a4) and J. Keckes (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed