Skip to main content Accessibility help
×
Home

Synchrotron XRF analyses of element distribution in fossilized sauropod dinosaur bones

  • M. Dumont (a1), N. Zoeger (a2), C. Streli (a2), P. Wobrauschek (a2), G. Falkenberg (a3), P. M. Sander (a4) and A. R. Pyzalla (a5)...

Abstract

Sauropod dinosaurs were typically one magnitude larger than any other living or extinct terrestrial animal. This sheer size of the sauropod leads to scale effects in their biology and physiology that still are inadequately understood. The only remnants of the sauropods are their fossilized bones. These fossilized bones have sustained burial for some hundred million years and thus may have experienced significant diagenetic changes. These diagenetic changes often do not affect bone preservation on the histological level, but may lead to significant alterations of the bone microstructure. Here the influence of diagenesis on the microstructure of fossilized sauropod bones using femur cross section of Brachiosaurus brancai that was excavated in the Tendaguru beds in Tanzania is investigated. The element distribution in this dinosaur bone is studied by a combination of micro-X-ray-fluorescence (μ-XRF) using synchrotron radiation and energy dispersive X-ray analyses (EDX) in the scanning electron microscope. These techniques reveal quantitative values of the element concentration at a macroscopic level combined with qualitative information at high spatial resolution of the distribution of Ca, Co, Cr, V, Pb, U, Sr, Y, and As in the fossil bones. This allows a differentiation between the remnants of the original bone apatite and pore filling minerals and also a visualization of damage, e.g., cracks introduced by diagenetic processes.

Copyright

References

Hide All
Behrensemeyer, A. K. (1978). “Taphonomic and ecologic information from bone weathering,” PaleobiologyPALBBM 4, 150162.
Bell, L. S. (1990). “Palaeopathology and diagenesis: An SEM evaluation of structural changes using backscattered electron imaging,” J. Archaeol. Sci.JASCDU0305-4403 17, 85102.10.1016/0305-4403(90)90016-X
Boscher-Barre, N., Trocellier, P., Deschamps, N., Dardenne, C., Blondiaux, J., and Buchet, L. (1992). “Nuclear micropore study of trace element in archeological bones,” J. Trace Microprobe Tech.JTMTDE 10, 7790.
Carvalho, M. L., Marques, A. F., Lima, M. T., and Reus, U. (2004). “Trace elements distribution and post-mortem intake in human bones from Middle Age by total reflection X-ray fluorescence,” Spectrochim. Acta, B At. Spectrosc. 59, 12511257.10.1016/j.sab.2004.01.019
Elliott, T. A. and Grime, G. W. (1993). “Examining the diagenetic alteration of human bone material from a range of archaeological burial sites using nuclear microscopy,” Nucl. Instrum. Methods Phys. Res. BNIMBEU 77, 537547.10.1016/0168-583X(93)95592-S
Ezzo, J. A. (1994). “Putting the chemistry back into archaeological bone chemistry analysis: Modeling potential paleodietary indicators,” J. Anthropol. Archaeol. 13, 134.10.1006/jaar.1994.1002
Ferreyro, R., Zoeger, N., Cernohlawek, N., Jokubonis, C., Koch, A., Streli, C., Wobrauschek, P., Sander, P. M., and Pyzalla, A. (2006). “Determination of the element distribution in sauropod long bones by micro-XRF,” Adv. X-Ray Anal.AXRAAA 49, 230235.
Heinrich, W. -D. (1999). “The taphonomy of dinosaurs from the Upper Jurassic of Tendaguru, Tanzania (East Africa), based on field sketches of the German Tendaguru expedition (1909–1913),” Mitteilungen aus dem Museum für Naturkunde in Berlin, Geowissenschaftliche Reihe 2, 2561.
Hubert, J. F., Parish, P. T., Chure, D. J., and Prostak, K. S. (1996). “Chemistry, microstructure, petrology, and diagenetic model of Jurassic dinosaur bones, Dinosaur National Monument, Utah,” J. Sediment. Res. 66, 531547.
Janensch, W. (1914). “Übersicht über die Wirbeltierfauna der Tendaguruschichten, nebst einer kurzen Charakterisierung der neu aufgeführten Arten von Sauropoden,” Archiv für Biontologie 3, 81110.
Janensch, W. (1950). “Die Skelettrekonstruktion von Brachiosaurus brancai,” Palaeontographica 7, 97103.
Janensch, W. (1961). “Die gliedmaszen und gliedmaszengürtel der sauropoden der Tendaguru-Schichten,” Palaeontographica 7, 177235.
Janssens, K., Proost, K., and Falkenberg, G. (2004). “Confocal microscopic X-ray fluorescence at the HASYLAB microfocus beamline: Characteristics and possibilities,” Spectrochim. Acta, Part BSAASBH 59, 16371645.10.1016/j.sab.2004.07.025
Karkanas, P., Bar-Yosef, O., Goldberg, P., and Weiner, S. (2000). “Diagenesis in prehistoric caves: The use of minerals that form in situ to assess the completeness of the archaeological record,” J. Archaeol. Sci.JASCDU 27, 915929.10.1006/jasc.1999.0506
Kolodny, Y., Luz, B., Sander, M., and Clemens, W. A. (1996). “Dinosaur bones: fossils or pseudomorphs? The pitfalls of physiology reconstruction from apatitic fossils,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 161171.10.1016/S0031-0182(96)00112-5
Lambert, J. B., Vlasak Simpson, S., Szpunar, C. B., and Buikstra, J. E. (1985). “Bone diagenesis and dietary analysis,” J. Hum. Evol.ZZZZZZ 14, 477482.10.1016/S0047-2484(85)80026-9
Millard, A. R. and Hedges, R. E. M. (1995). “The role of the environment in uranium uptake by buried bone,” J. Archaeol. Sci.JASCDU 22, 239250.10.1006/jasc.1995.0025
Parker, R. B. and Toots, H. (1980). Fossils in the Making: Vertebrate Taphonomy and Paleoecology, edited by Behrensmeyer, A. K. and Hill, A. P. (University of Chicago, Chicago), pp. 197207.
Pfretzschner, H. -U. (2000). “Microcracks and fossilization of Haversian bone,” Neues Jahrb. Mineral., Abh.NJMIAK 216, 413432.
Reeder, R. J. and Grams, J. C. (1987). “Sector zoning in calcite cement crystals: Implications for trace element distributions in carbonates,” Geochim. Cosmochim. ActaGCACAK 51, 187194.10.1016/0016-7037(87)90230-4
Reiche, I., Favre-Quattropani, L., Vignaud, C., Bocherens, H., Charlet, L., and Menu, M. (2003). “A multi-analytical study of bone diagenesis: the Neolithic site of Bercy (Paris, France),” Meas. Sci. Technol.MSTCEP 14, 16081619.10.1088/0957-0233/14/9/312
Rheingold, A. L., Hues, S., and Cohen, M. N. (1983). “Strontium and zinc content in bones as an indication of diet,” J. Chem. Educ.JCEDA8 60, 233234.
Romer, R. L. (2001). “Isotopically heterogeneous initial Pb and continuous 222Rn loss in fossils: The U-Pb systematics of Brachiosaurus brancai,” Geochim. Cosmochim. ActaGCACAK 65, 42014213.10.1016/S0016-7037(01)00716-5
Safont, S., Malgosa, A., Subira, M. E., and Gibert, J. (1998). “Can trace elements in fossils provide information about palaeodiet?Int. J. Osteoarchaeol.IJOHEA 8, 2337.10.1002/(SICI)1099-1212(199801/02)8:1<23::AID-OA403>3.0.CO;2-R
Samoilov, V. and Benjamini, Ch. (1996). “Geochemical features of dinosaur remains from the Gobi Desert, South Mongolia,” Palaios 11, 519531.10.2307/3515188
Sander, P. M. (2000). “Longbone histology of the Tendaguru sauropods: Implications for growth and biology,” PaleobiologyPALBBM 26, 466488.10.1666/0094-8373(2000)026<0466:LHOTTS>2.0.CO;2
Tükten, T., Pfretzschner, H. -U., Vennemann, T. W., Sun, G., and Wang, Y. D. (2004). “Paleobiology and skeletochronology of Jurassic dinosaurs: Implications from the histology and oxygen isotope compositions of bones,” Palaeogeogr. Palaeoclimatol. Palaeoecol. 206, 217238.10.1016/j.palaeo.2004.01.005
Vekemans, B., Janssens, K., Vincze, L., Adams, F., and Van Espen, P. (1994). “Analysis of X-ray spectra by iterative least squares (AXIL): New developments,” XRay Spectrom. 23, 278285.10.1002/xrs.1300230609

Keywords

Synchrotron XRF analyses of element distribution in fossilized sauropod dinosaur bones

  • M. Dumont (a1), N. Zoeger (a2), C. Streli (a2), P. Wobrauschek (a2), G. Falkenberg (a3), P. M. Sander (a4) and A. R. Pyzalla (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed