Skip to main content Accessibility help

Synchrotron powder diffraction, X-ray absorption and 1H nuclear magnetic resonance data for hypoxanthine, C5H4N4O

  • Joel Reid (a1), Toby Bond (a1), Shiliang Wang (a2), Jigang Zhou (a1) and Anguang Hu (a2)...


Synchrotron powder X-ray diffraction, X-ray absorption spectroscopy (XAS), and proton nuclear magnetic resonance (1H-NMR) data have been used to examine the structure of hypoxanthine, 1,7-dihydro-6H-purin-6-one (C5H4N4O), a purine base that participates in numerous metabolic processes. XAS and 1H-NMR spectroscopy were used to determine that hypoxanthine was present in its keto form (both in solid state and dissolved in an organic solvent). Rigid body refinement was performed with the Rietveld software package GSAS yielding triclinic lattice parameters of a = 7.1179 (2) Å, b = 9.7830 (3) Å, c = 10.4009 (3) Å, α = 58.876 (1)°, β = 67.609 (1)°, and γ = 71.937 (2)° (C5H4N4O, Z = 4, space group P $\bar 1$ ).


Corresponding author

a) Author to whom correspondence should be addressed. Electronic mails:,


Hide All
Allen, F. H. (2002). “The Cambridge structural database: a quarter of a million crystal structures and rising,” Acta Crystallogr. B 58, 380388.
Bartl, T., Zacharová, Z., Sečkářová, P., Kolehmainen, E. and Marek, R. (2009). “NMR quantification of tautomeric populations in biogenic purine bases,” Eur. J. Org. Chem. 9, 13771383.
Batey, R. T., Gilbert, S. D. and Montange, R. K. (2004). “Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine,” Nature 432, 411415.
Becke, A. D. (1988). “Density-functional exchange-energy approximation with correct asymptotic behavior,” Phys. Rev. A 38(6), 30983100.
Chenon, M. T., Pugmire, R. J., Grant, D. M., Panzica, R. P. and Townsend, L. B. (1975). “Carbon-13 magnetic resonance. XXVI. Quantitative determination of the tautomeric populations of certain purines,” J. Am. Chem. Soc. 97, 46364642.
Deng, H., Cahill, S. M., Abad, J. L., Lewandowicz, A., Callender, R. H., Schramm, V. and Jones, R. A. (2004). “Active site contacts in the purine nucleoside phosphorylase-hypoxanthine complex by NMR and ab initio calculations,” Biochemistry 43, 1596615974.
Dinnebier, R. E. (1999). “Rigid bodies in powder diffraction: a practical guide,” Powder Diffr. 14, 8492.
Gallant, B. M., Mitchell, R. R., Kwabi, D. G., Zhou, J., Zuin, L., Thompson, C. V. and Shao-Horn, Y. (2012). “Chemical and morphological changes of Li–O2 battery electrodes upon cycling,” J. Phys. Chem. C 116, 2080020805.
ICDD (2013), PDF-4+ 2013 (Database) edited by Dr. Kabekkodu, Soorya (International Centre for Diffraction Data, Newtown Square, PA, USA).
Krylov, A. I. and Gill, P. M. W. (2013). “Q-Chem: an engine for innovation,” WIREs Comput. Mol. Sci. 3, 317326.
Lake, C. H. and Toby, B. H. (2011). “Rigid body refinements in GSAS/EXPGUI,” Powder Diffr. 26, S13S21.
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report No. LAUR 86-748), Los Alamos, NM: Los Alamos National Laboratory.
Lee, C., Yang, W. and Parr, R. G. (1988). “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B 37(2), 785789.
Marat, K. (2014). Spinworks: NMR Processing Software (Version Available from
Pang, B., McFaline, J. L., Burgis, N. E., Dong, M., Taghizadeh, K., Sullivan, M. R., Elmquist, C. E., Cunningham, R. P. and Dedon, P. C. (2012). “Defects in purine nucleotide metabolism lead to substantial incorporation of xanthine and hypoxanthine into DNA and RNA,” Proc. Nat. Acad. Sci. USA 109, 23192324.
Parker, R., Snedden, W. and Watts, R. W. E. (1969). “The mass-spectrometric identification of hypoxanthine and xanthine (‘oxypurine’) in skeletal muscle from two patients with congenital xanthine oxidase deficiency (xanthinuria),” Biochem. J. 115, 103108.
Puig, J. G., Mateos, F. A., Jimenez, M. L. and Ramos, T. H. (1988). “Renal excretion of hypoxanthine and xanthine in primary gout,” Am. J. Med. 85, 533537.
Reid, J. W., Kaduk, J. A., Garimella, S. V. and Tse, J. S. (2015). “Rietveld Refinement using synchrotron powder diffraction data for curcumin, C21H20O6, and comparison with density functional theory,” Powder Diffr. 30, 6775.
Saladino, R., Crestini, C., Costanzo, G., Negri, R., and Di Mauro, E. (2001). “A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: implications for the origin of life,” Bioorg. Med. Chem. 9, 12491253.
Samuel, N. T., Lee, C. Y., Gamble, L. J., Fischer, D. A. and Castner, D. G. (2006). “NEXAFS characterization of DNA components and molecular-orientation of surface-bound DNA oligomers,” J. Electron Spectrosc. Rel. Phenom. 152, 134142.
Sarkar, S. D. and Nahar, L. (2007). Chemistry for Pharmacy Students (Wiley, New York).
Schmalle, H. W., Hänggi, G. and Dubler, E. (1988). “Structure of hypoxanthine,” Acta Crystallogr. C 44, 732736.
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open-source all-purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.
Yang, R. Q. and Xie, Y. R. (2007). “A monoclinic polymorph of hypoxanthine,” Acta Crystallogr. E 63, o3309.
Zhou, J., Hu, Y., Li, X., Wang, C. and Zuin, L. (2014). “Chemical bonding in amorphous Si-coated carbon nanotubes as anodes for Li ion batteries: a XANES study,” RSC Adv. 4, 2022620229.
Zubavichus, Y., Shaporenko, A., Korolkov, V., Grunze, M. and Zharnikov, M. (2008). “X-ray absorption spectroscopy of the nucleotide bases at the carbon, nitrogen, and oxygen K-edges,” J. Phys. Chem. B 112, 1371113716.


Synchrotron powder diffraction, X-ray absorption and 1H nuclear magnetic resonance data for hypoxanthine, C5H4N4O

  • Joel Reid (a1), Toby Bond (a1), Shiliang Wang (a2), Jigang Zhou (a1) and Anguang Hu (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed