Skip to main content Accessibility help
×
Home

Study of the dielectric properties of ACu3Ti4O12 (A = Eu2/3, Tb2/3, and Na1/2Eu1/2)

  • M. Li (a1), Y. Shen (a1) and C. X. Li (a1)

Abstract

We report the dielectric properties of ACu3Ti4O12 (A = Eu2/3, Tb2/3, and Na1/2Eu1/2) (ACTO) in the frequency range of 40 Hz–2.5 MHz and in the temperature range of 293–473 K. The experimental results show that substituting for Ca improves the loss tangent of CaCu3Ti4O12 (CCTO). Although the dielectric constants largely decrease, they remain at a high level of 103. To identify the observed dielectric performances of ACTO, scanning electron microscopy and complex impedance measurements were conducted. The conducting mechanism for the grain of ACTO was found to be ion jumping rather than electron hopping (for the grain of CCTO). The results show that the decreased dielectric constant may be related to the decreased grain size, the different carrier in the grain, the different grain boundary properties, or a combination of these factors. All these factors are associated with the deficiency of oxygen vacancies in the samples of ACTO. The decreased loss tangent may be due to the increase in the grain boundary resistance.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail: limiao@xaut.edu.cn

References

Hide All
Adams, T. B., Sinclair, D. C., and West, A. R. (2002). “Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics,” Adv. Mater. 14, 13211323.
Babu, J. B., He, M., Zhang, D. F., Chen, X. L., and Dhanasekaran, R. (2007). “Enhancement of ferroelectric properties of Na1/2Bi1/2TiO3-BaTiO3 single crystals by Ce dopings,” Appl. Phys. Lett. 90, 102901.
Bidault, O., Maglione, M., Actis, M., and Kchikech, M. (1995). “Polaronic relaxation in perovskites,” Phys. Rev. B. 52, 41914197.
Boultif, A. and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.
Capsoni, D., Bini, M., Massarotti, V., Chiodelli, G., Mozzatic, M. C., and Azzoni, C. B. (2004). “Role of doping and CuO segregation in improving the giant permittivity of CaCu3Ti4O12,” J. Solid State Chem. 177, 44944500.
Chen, X. L. and Eysel, W. (1999). “Subsolidus phase relations in La2O3-Bi2O3-CuO,” Powder Diffr. 14, 274275.
Chen, X. L., Liang, J. K., and Wang, C. (1995). “Effect of high-angle diffraction data on Rietveld structure refinement,” Acta Phys. Sin. Ov. Ed. 4, 259267.
Chen, X. L., Bauernfeind, L., and Braun, H. F. (1997). “Na0.5La0.5RuO3: structure and electronic properties,” Phys. Rev. B. 55, 68886895.
Chiodelli, G., Massarotti, V., Capsoni, D., Bini, M., Azzoni, C. B., Mozzati, M. C., and Lupotto, P. (2004). “Electric and dielectric properties of pure and doped CaCu3Ti4O12 perovskite materials,” Solid State Commun. 132, 241246.
Chung, S.-Y., Kim, I.-D., and Kang, S.-J. (2004). “Strong nonlinear current-voltage behaviour in perovskite-derivative calcium copper titanate,” Nat. Mater. 3, 774778.
Fang, T. T. and Liu, C. P. (2005). “Evidence of the internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12,” Chem. Mater. 17, 51675171.
Feng, T.-T. and Shiau, H.-K. (2004). “Mechanism for developing the boundary barrier layers of CaCu3Ti4O12,” J. Am. Ceram. Soc. 87, 20722079.
Grubbs, R. K., Venturini, E. L., Clem, P. G., Richardson, J. J., Tuttle, B. A., and Samara, G. A. (2005). “Dielectric and magnetic properties of Fe- and Nb-doped CaCu3Ti4O12,” Phys. Rev. B. 72, 104111.
He, L., Neaton, J. B., Cohen, M. H., and Vanderbilt, D. (2002). “First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12,” Phys. Rev. B. 65, 214112.
Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S., and Ramirez, A. P. (2001). “Optical response of high-dielectric-constant perovskite-related oxide,” Science. 293, 673676.
Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S., Subramanian, M. A., and Ramirez, A. P. (2003). “Charge transfer in the high dielectric constant materials CaCu3Ti4O12 and CdCu3Ti4O12,” Phys. Rev. B. 67, 092106.
Jesurani, S., Kanagesan, S., Hashim, M., and Ismail, I. (2013). “Dielectric properties of Zr doped CaCu3Ti4O12 synthesized by sol-gel route,” J. Alloys Comp. 551, 456462.
Kim, K.-M., Lee, J.-H., Lee, K.-M., Kim, D.-Y., Riu, D.-H., and Lee, S. B. (2008). “Microstructural evolution and dielectric properties of Cu-deficient and Cu-excess CaCu3Ti4O12 ceramics,” Mater. Res. Bull. 43, 284291.
Lei, N. and Chen, X. M. (2007). “Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 91, 122905.
Li, M., Feteira, A., Sinclair, D. C., and West, A. R. (2006). “Influence of Mn doping on the semiconducting properties of CaCu3Ti4O12 ceramics,” Appl. Phys. Lett. 88, 232903.
Li, M., Liu, Q., and Li, C. X. (2017). “Study of the dielectric responses of Eu-doped CaCu3Ti4O12,” J. Alloys Comp. 699, 278282.
Liu, J. J., Duan, C.-G., Yin, W.-G., Mei, W. N., Smith, R. W., and Hardy, J. R. (2004). “Large dielectric constant and Maxwell-Wagner relaxation in Bi2/3Cu3Ti4O12,” Phys. Rev. B. 70, 144106.
Liu, J. J., Duan, C.-G., and Mei, W. N. (2005). “Dielectric properties and Maxwell-Wagner relaxation of compounds ACu3Ti4O12 (A=Ca, Bi2/3, Y2/3, La2/3),” J. Appl. Phys. 98, 093703.
Liu, L. J., Fan, H. Q., Chen, X. L., and Fang, P. Y. (2009). “Electrical properties and microstructural characteristics of nonstoichiometric CaCu3xTi4O12 ceramics,” J. Alloys Comp. 469, 529534.
Morrison, F. D., Sinclair, D. C., and West, A. R. (2001). “An alternative explanation for the origin of the resistivity anomaly in La-doped BaTiO3,” J. Am. Ceram. Soc. 84, 474476.
Ni, L., Chen, X. M., Liu, X. Q., and Hou, R. Z. (2006). “Microstructure-dependent giant dielectric response in CaCu3Ti4O12 ceramics,” Solid State Commun. 139, 4550.
Ren, H., Liang, P., and Yang, Z. (2010). “Processing, dielectric properties and impedance characteristics of Na0.5Bi0.5Cu3Ti4O12 ceramics,” Mater. Res. Bull. 45, 16081613.
Sebald, J., Krohnsa, S., Lunkenheimer, P., Ebbinghaus, S. G., Riegg, S., Reller, A., and Loidl, A. (2010). “Colossal dielectric constants: a common phenomenon in CaCu3Ti4O12 related materials,” Solid State Commun. 150, 857860.
Senda, S., Rhouma, S., Torkani, E., Megriche, A., and Autret, C. (2017). “Effect of nickel substitution on electrical and microstructural properties of CaCu3Ti4O12 ceramic,” J. Alloys Comp. 698, 152158.
Sinclair, D. C., Adams, T. B., Morrison, F. D., and West, A. R. (2002). “CaCu3Ti4O12: one-step internal barrier layer capacitor,” Appl. Phys. Lett. 80, 21532155.
Somphan, Z. W., Thongbai, P., Yamwong, T., and Maensiri, S. (2013). “High Schottky barrier at grain boundaries observed in Na1/2Sm1/2Cu3Ti4O12 ceramics,” Mater. Res. Bull. 48, 40874092.
Subramanian, M. A. and Sleight, A. W. (2002). “ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy,” Solid State Sci. 4, 347351.
Subramanian, M. A., Li, D., Duan, N., Reisner, B. A., and Sleight, A. W. (2000). “High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases,” J. Solid State Chem. 151, 323325.
Sulaimain, M. A., Hutagalung, S. D., Ain, M. F., and Ahmad, Z. A. (2010). “Dielectric properties of Nb-doped CaCu3Ti4O12 electroceramics measured at high frequencies,” J. Alloys Comp. 493, 486492.
Thongbai, P., Putasaeng, B., Yamwong, T., and Maensiri, S. (2012). “Modified giant dielectric properties of samarium doped CaCu3Ti4O12 ceramics,” Mater. Res. Bull. 47, 22572263.
Wang, C. C. and Zhang, L. W. (2007). “Polaron relaxation related to localized charge carriers in CaCu3Ti4O12,” Appl. Phys. Lett. 90, 142905.
Wang, W. Y., Zhang, D. F., Xu, T., Li, X. F., Zhou, T., and Chen, X. L. (2002). “Nonlinear electrical behavior and dielectric properties of (Ca, Ta)-doped TiO2 ceramics,” J. Alloys Comp. 335, 210215.
West, A. R., Adams, T. B., Morrison, F. D., and Sinclair, D. C. (2004). “Novel high capacitance materials: BaTiO3: La and CaCu3Ti4O12,” J. Eur. Ceram. Soc. 24, 14391448.
Yuan, W. X., Wu, Q. X., Liu, C. K., Luo, Z. K., and Li, Z. J. (2013a). “Effect of phase purity on dielectric properties of CaCu3+xTi4O12 ceramics,” Solid State Sci. 24, 5861.
Yuan, W. X., Luo, Z. K., and Wang, C. D. (2013b). “Investigation on effects of CuO secondary phase on dielectric properties of CaCu3Ti4O12 ceramics,” J. Alloys Comp. 562, 14.
Zhang, L. and Tang, Z.-J. (2004). “Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12,” Phys. Rev. B. 70, 174306.
Zhang, J. L., Zheng, P., Wang, C. L., Zhao, M. L., Li, J. C., and Wang, J. F. (2005). “Dielectric dispersion of CaCu3Ti4O12 ceramics at high temperatures,” Appl. Phys. Lett. 87, 142901.

Keywords

Related content

Powered by UNSILO
Type Description Title
UNKNOWN
Supplementary materials

Li et al. supplementary material
Li et al. supplementary material 1

 Unknown (133 KB)
133 KB
UNKNOWN
Supplementary materials

Li et al. supplementary material
Li et al. supplementary material 2

 Unknown (133 KB)
133 KB
UNKNOWN
Supplementary materials

Li et al. supplementary material
Li et al. supplementary material 3

 Unknown (133 KB)
133 KB
UNKNOWN
Supplementary materials

Li et al. supplementary material
Li et al. supplementary material 4

 Unknown (133 KB)
133 KB

Study of the dielectric properties of ACu3Ti4O12 (A = Eu2/3, Tb2/3, and Na1/2Eu1/2)

  • M. Li (a1), Y. Shen (a1) and C. X. Li (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.