Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T10:08:18.947Z Has data issue: false hasContentIssue false

Structure of TlSr2PrCu207−x by Rietveld analysis

Published online by Cambridge University Press:  10 January 2013

Hoong-Kun Fun
Affiliation:
School of Physics, Universiti Sains Malaysia, USM 11800 Penang, Malaysia
Ping Yang
Affiliation:
School of Physics, Universiti Sains Malaysia, USM 11800 Penang, Malaysia
Rusli Othman
Affiliation:
Intel Technology Sdn. Bhd., 11900, Penang, Malaysia
Tsong-Jen Lee
Affiliation:
Department of Physics, National Tsinghua University, Hsinchu, 30043, Taiwan
Chiou-Chu Lai
Affiliation:
Institute of Electronics, National Chiaotung University, Hsinchu, 30039, Taiwan
Huan-Chiu Ku
Affiliation:
Department of Physics, National Tsinghua University, Hsinchu, 30043, Taiwan

Abstract

The crystalline structure of new TlSr2PrCu207−x was obtained at room temperature (300 K) and low temperature (100 K) from X-ray powder diffraction with CuKα radiation using Rietveld analysis. TlSr2PrCu207−x has an isotypical structure with TlBa2CaCu207 (1212). At 300 K, crystal data: Tl0.864Sr2PrCu2O6.75, Mr=727.811, the tetragonal system, P4/mmm, a =3.85404(5) Å, c = 12.1046(2) Å, V=179.80 Å3, Z=1, Dx =6.7218 g cm−3, μ =1143.922 cm−1 (λ = 1.54051 Å), F(000)=317.0, the structure was refined with 28 parameters to Rwp=5.29%, Rp = 3.65% for 3551 step intensities and Rb=7.40%, Rf=639% for 155 peaks, “goodness of fit” 5=3.05. At 100 K, crystal data: Tl0.858Sr2PrCu2O6.61, Mr=724.345, the tetragonal system, P4/mmm, a =3.84872(6) Å, c = 12.0771(3) Å, V=178.89 Å3, Z=1, Dx=6.7235 g cm−3, μ=1146.939 cm−1 (λ= 1.54051 Å), F(000) = 315.4, the structure was refined with 26 parameters to Rwp=6.70%, Rp=5.11% for 2926 step intensities and Rb=7.83%, Rf=6.70% for 131 peaks, “goodness of fit” S = 1.75.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hill, R. J. (1992). J. Appl. Cryst. 25, 589.CrossRefGoogle Scholar
Ku, H. C., and Lai, C. C. (1993). Chinese J. Low Temperature Phys. 15, 13.Google Scholar
Lai, C. C., Chiou, B. S., Chen, Y. Y., Ho, J. C., and Ku, H. C. (1992). Physica C 202, 104.CrossRefGoogle Scholar
Lai, C. C. (1993). Ph.D. thesis, Nat. Chiaotung Univ., Hsinchu, 30039, Taiwan, pp. 16 and 65.Google Scholar
Lee, T.-J., Fun, H.-K., Wang, A., Chou, C. H., Lai, C.-C., and Ku, H.-C. (1993). Chinese J. Phys. 31 (6–II), 1125.Google Scholar
Manako, T., Shimakawa, Y. D., Kubo, Y., Satoh, T., and Igarashi, H. (1988). Physica C 156, 315.CrossRefGoogle Scholar
Martin, C., Bourgault, D., Michel, C., Hervieu, M., and Raveau, B. (1989). Mod. Phys. Lett. B 3, 93.CrossRefGoogle Scholar
Mizuki, J., Kubo, Y., Manako, T., Shimakawa, T. D., and Igarashi, H. (1988). Physica C 156, 781.CrossRefGoogle Scholar
Nakajima, S., Kikuchi, M., Syono, Y., Kubayashi, N., and Muto, Y. (1990). Physica C 168, 57.CrossRefGoogle Scholar
Nardelli, N. (1983). Comput. Chemistry 7, 9598.CrossRefGoogle Scholar
Poole, C. P. Jr., Datta, T., and Farach, H. A. (1988). Copper Oxide Superconductors (Wiley, New York), p. 89.Google Scholar
Sakthivel, A., and Young, R. A., R. A., (1991). USER'S GUIDE to Programs DBWS-9006 and DBWS-9006PC for Rietveld analysis of X-ray and neutron powder Diffraction patterns, 17 September 1991 (School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA).Google Scholar
Wiles, D. B., and Young, R. A., R. A., (1981). J. Appl. Phys. 14, 149.Google Scholar