Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T02:36:55.264Z Has data issue: false hasContentIssue false

Structural refinement of neutron powder diffraction data of two-stage martensitic phase transformations in Ti50.75Ni47.75Fe1.50 shape memory alloy

Published online by Cambridge University Press:  01 March 2012

Husin Sitepu*
Affiliation:
Crystallography Laboratory, Virginia Tech, Blacksburg, Virginia 24061, USA and Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
*
Electronic mail: sitepu@vt.edu

Abstract

Transformation behaviors of the technologically important polycrystalline Ti50.75Ni47.75Fe1.50 shape memory alloy were investigated using differential scanning calorimeter (DSC) and powder diffraction techniques. DSC revealed that there are two-stage (i.e., cubic→trigonal→monoclinic) martensitic phase transformations on cooling and a one-step transformation (monoclinic→cubic) on heating. In situ structural refinement of cubic→trigonal→monoclinic on cooling was carried out using the D1A high-resolution neutron powder diffractometer at the Institut Laue-Langevin Neutrons for Science in Grenoble, France. Results showed that the phases involved during the phase transition are consistent with the differential scanning calorimeter cooling curve, and the refined crystal structure parameters obtained from Rietveld refinements with the generalized spherical harmonic description agreed reasonably well with X-ray single-crystal data. Subsequently, a combined neutron and synchrotron structural refinement for each phase was conducted because the trial refinements initially using only the synchrotron data of trigonal phase yielded a false minimum with a somewhat high goodness-of-fit χ2. Results obtained from the combined neutron and synchrotron data of the cubic, trigonal, and monoclinic phases show that the same minimum goodness-of-fit indices were always obtained.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bunge, H.-J. (1982). Texture Analysis in Materials Science: Mathematical Methods, translated by P. R. Morris (Butterworth-Heinemann, London).Google Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: application of the March model, ” J. Appl. Crystallogr.JACGAR10.1107/S0021889886089458 19, 267272.CrossRefGoogle Scholar
Hara, T., Ohba, T., and Otsuka, K. (1995). “Structural study of the R-phase in Ti–Ni alloy by the Rietveld method, ” J. Phys. IIIJPAIEU 5, 641645.Google Scholar
Hara, T., Ohba, T., Okunishi, E., and Otsuka, K. (1997). “Structural study of R-phase in Ti50.23Ni and Ti50.75Ni47.75Fe1.50 alloy, ” Mater. Trans., JIMMTJIEY 38, 1117.CrossRefGoogle Scholar
Kudoh, Y., Tokonami, M., Miyazaki, S., and Otsuka, K. (1985). “Crystal structure of the mertensite in Ti50.80Ni49.20 alloy analyzed by the single crystal X-ray diffraction method, ” Acta Metall.AMETAR10.1016/0001-6160(85)90128-2 33, 20492056.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS), Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Michal, G. M. and Sinclair, R. (1981). “The structure of TiNi martensite, ” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR10.1107/S0567740881007292 37, 18031807.Google Scholar
Miyamoto, H., Taniwaki, T., Ohba, T., Otsuka, K., Nishigori, S., and Kato, K. (2005). “Two stage B2-B19-B19′ martensitic transformation in a Ti50Ni30Cu20 alloy observed by synchrotron radiation, ” Scr. Mater.SCMAF7 53, 171175.CrossRefGoogle Scholar
Otsuka, K. and Ren, X. (2005). “Physical metallurgy of Ti–Ni-based shape memory alloys, ” Prog. Mater. Sci.PRMSAQ10.1016/j.pmatsci.2004.10.001 50, 511678.Google Scholar
Popa, N. C. (1992). “Texture in Rietveld refinement, ” J. Appl. Crystallogr.JACGAR10.1107/S0021889892004795 25, 611616.CrossRefGoogle Scholar
Popa, N. C. (1998). “The (h k l) Dependence of Diffraction-Line Broadening Caused by Strain and Size for all Laue Groups in Rietveld Refinement, ” J. Appl. Crystallogr.JACGAR10.1107/S0021889897009795 31, 176180.Google Scholar
Schryvers, D. and Potapov, P. L. (2002). “R-Phase Structure Refinement Using Electron Diffraction Data, ” Mater. Trans., JIMMTJIEY 43, 774779.Google Scholar
Sitepu, H. (2002). “Assessment of preferred orientation with neutron powder diffraction data, ” J. Appl. Crystallogr.JACGAR 35, 274277.CrossRefGoogle Scholar
Sitepu, H. (2003). “Use of Synchrotron Diffraction Data for Describing Crystal Structure and Crystallographic Phase Analysis of R-Phase NiTi Shape Memory Alloy, ” Textures Microstruct.TEMIDK 35, 185195.CrossRefGoogle Scholar
Sitepu, H. and Brokmeier, H.-G. (2004). “Quantitative Texture Analysis and Phase Fraction of Nickel-Titanium Shape Memory Alloys by Means of Neutron Diffraction, ” Mater. Sci. ForumMSFOEP 443–444, 267270.CrossRefGoogle Scholar
Sitepu, H. and Brokmeier, H.-G. (2005). “Use of Neutron Diffraction for Describing Texture of Isostatically-Pressed Molybdite Powders, ” Solid State Phenom.DDBPE8 105, 8388.CrossRefGoogle Scholar
Sitepu, H., Prask, H. J., and Vaudin, M. D. (2001). “Texture characterization in X-ray and neutron powder diffraction data using the generalized spherical-harmonic, ” Adv. X-Ray Anal.AXRAAA 44, 241246.Google Scholar
Sitepu, H., Schmahl, W. W., Allafi, J. K., Eggeler, G., Dlouhy, A., Toebbens, D. M., and Tovar, M. B. (2002a). “Neutron diffraction phase analysis during thermal cycling of a Ni-rich NiTi shape memory alloy using the Rietveld method, ” Scr. Mater.SCMAF7 46, 543548.Google Scholar
Sitepu, H., Schmahl, W. W., and Stalick, J. K. (2002b). “Correction of intensities for preferred orientation in neutron-diffraction data of NiTi shape-memory alloy using the generalized spherical-harmonic description, ” Appl. Phys. AAPAMFC A74, S1719S1721.CrossRefGoogle Scholar
Sitepu, H., O’Connor, B. H., Benmarouane, A., Hansen, T., Ritter, C., and Brokmeier, H.-G. (2004a). “Texture correction in neutron powder diffraction data of molybdite using the generalized spherical harmonic model, ” Physica B 350, E573E576.CrossRefGoogle Scholar
Sitepu, H., O’Connor, B. H., and Li, D. Y. (2004b). “Deriving the bulk modulus of a single-phase powder from the March preferred orientation parameter, ” Physica BPHYBE3 350, E577E580.Google Scholar
Sitepu, H., O’Connor, B. H., and Li, D. (2005a). “Comparative evaluation of the March and generalized spherical harmonic preferred orientation models using X-ray diffraction data for molybdite and calcite powders, ” J. Appl. Crystallogr.JACGAR10.1107/S0021889804031231 38, 158167.Google Scholar
Sitepu, H., Wright, J. P., Hansen, T., Chateigner, D., Brokmeier, H.-G., Ritter, C., and Ohba, T. (2005b). “Combined Synchrotron and Neutron Structural Refinement of R-Phase in Ti50.75∙Ni47.75∙Fe1.50 Shape Memory Alloy, ” Mater. Sci. ForumMSFOEP 495–497, 255260.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction, ” J. Appl. Crystallogr.JACGAR10.1107/S0021889898006001 32, 281289.Google Scholar
Von Dreele, R. B. (1997). “Quantitative texture analysis by Rietveld refinement, ” J. Appl. Crystallogr.JACGAR10.1107/S0021889897005918 30, 517525.Google Scholar
Wang, F. E., Buehler, W. J., and Pickart, S. J. (1965). “Crystal Structure and a Unique ‘Martensitic’ Transition of TiNi, ” J. Appl. Phys.JAPIAU10.1063/1.1702955 36, 32323239.CrossRefGoogle Scholar
Wenk, H.-R., Cont, L., Xie, Y., Lutterotti, L., Ratschbacher, L., and Richardson, J. (2001). “Rietveld texture analysis of Dabie Shan eclogite from TOF neutron diffraction spectra, ” J. Appl. Crystallogr.JACGAR10.1107/S0021889801005635 34, 442453.CrossRefGoogle Scholar