Skip to main content Accessibility help

Structural and optical properties of Ba(Co1−xZnx)SiO4 (x = 0.2, 0.4, 0.6, 0.8)

  • J. Anike (a1), R. Derbeshi (a2), W. Wong-Ng (a3), W. Liu (a4), D. Windover (a3), N. King (a3), S. Wang (a5), J. A. Kaduk (a6) (a7) and Y. Lan (a2)...


Structural characterization and X-ray reference powder pattern determination have been conducted for the Co- and Zn-containing tridymite derivatives Ba(Co1−xZnx)SiO4 (x = 0.2, 0.4, 0.6, 0.8). The bright blue series of Ba(Co1−xZnx)SiO4 crystallized in the hexagonal P63 space group (No. 173), with Z = 6. While the lattice parameter “a” decreases from 9.126 (2) Å to 9.10374(6) Å from x = 0.2 to 0.8, the lattice parameter “c” increases from 8.69477(12) Å to 8.72200(10) Å, respectively. Apparently, despite the similarity of ionic sizes of Zn2+ and Co2+, these opposing trends are due to the framework tetrahedral tilting of (ZnCo)O4. The lattice volume, V, remains comparable between 626.27 Å3 and 626.017 (7) Å3 from x = 0 to x = 0.8. UV-visible absorption spectrum measurements indicate the band gap of these two materials to be ≈3.3 and ≈3.5 eV, respectively, therefore potential UV photocatalytic materials. Reference powder X-ray diffraction patterns of these compounds have been submitted to be included in the Powder Diffraction File (PDF).


Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail:


Hide All
Abe, R. (2010). “Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation,” J. Photochem. Photobiol. C Photochem. Rev. 11, 179209.
Barry, T. L. (1968). “Fluorescence of Eu-activated phases in binary alkaline earth orthosilicate systems,” J. Electrochem. Soc. 115, 11811184.
Bispo, A. G. Jr, Ceccato, D. A., Lima, S. A. M., and Pires, A. M. (2017). “Red phosphor based on Eu3+-isoelectronically doped Ba2SiO4 obtained via sol–gel route for solid state lightning,” RSC Adv. 7, 53752.
Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database,” Acta Crystallogr. B 41, 244247.
Jüstel, H., Nikol, H., and Ronda, C. (1998). “New developments in the field of luminescent materials for lighting and displays,” Angew Chem. Int. Ed. 37, 3048.
Karazhanov, S. Z., Ravindran, P., Fjellvåg, H., and Svensson, B. G. (2009). “Electronic structure and optical properties of ZnSiO3 and Zn2SiO4,” J. Appl. Phys. 106, 123701.
Khan, M. M., Adil, S. F., and Al-Mayouf, A. (2015) “Metal oxides as photocatalysts,” J. Saudi Chemical Soc. 19, 4620464.
King, N., Boltersdorf, J., Maggard, P., and Wong-Ng, W. (2017). “Polymorphism and structural distortions of ternary mixed-metal oxide photocatalysts constructed with α-U3O8 types of layers,” Crystals. (Basel) 7, 145.
Larson, A. C., and von Dreele, R. B. (2004). General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, Los Alamos, USA.
Lin, Y., Niu, Z., Han, Y., Li, C., Zhou, W., Zhang, J., Yu, L., and Lian, S. (2017). “The self-reduction ability of RE3+ in orthosilicate (RE = Eu, Tm, Yb, Sm): BaZnsiO4-based phosphorus prepared in air and its luminescence,” J. Alloys and Comp. 690, 267273.
Liu, B., and Barbier, J. (1993). “Structures of the Stuffed Tridymite Derivative, BaMSiO4 (M = Co, Zn, Mg),” J. Solid State Chem. 102, 115125.
Maeda, K. (2011). “Photocatalytic water splitting using semiconductor particles: history and recent developments,” J. Photochem. Photobiol. C Photochem. Rev. 12, 237268.
Martsinovich, N. (2016). “Theory of materials for solar energy conversion,” J. Phys. Condens. Matter 28, 70301.
McMurdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B., and Wong-Ng, W. (1986a). “Methods of producing standard Xray diffraction powder patterns,” Powder Diffr. 1(1), 40.
McMurdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B., Wong-Ng, W., Ettlinger, L, and Hubbard, C. R. (1986b). “JCPDS—international Centre for Diffraction Data task group on cell parameter refinement,” Powd. Diffr. 1(2), 6676.
Nagai, T., Asai, S., Okazaki, R., Terasaki, I., and Taniguchi, H. (2015). “Effects of element substitution on the pyroelectric phase transition of stuffed-tridymite-type BaZnGeO4,” Solid State. Comm. 219, 1215.
Osterloh, F. E. (2013). “Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting,” Chem. Soc. Rev. 42, 22942320.
Paranthaman, M. P., Wong-Ng, W., and Bhattacharya, RN. (2015). “Semiconductor Materials for Solar Photovoltaic (PV) Cells,” Springer Series in Materials Science 218, Springer US, New York, New York.
PDF4+ (2019) (Database), edited by Dr. Soorya Kabekkodu, International Centre for Diffraction Data, Newtown Square, PA, 19073-3273, USA.
Qasrawi, A. F. (2005). “Refractive index, band gap and oscillator parameters of amorphous GaSe thin films,” Cryst. Res. Technol., 40(6), 610614..
Rietveld, H. M. (1969) “A profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst. 2, 6571.
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32, 751767.
Streit, H. C., Kramer, J., Suta, M., and Wickleder, C. (2013). “Red, green, and blue photoluminescence of Ba2SiO4:M (M = Eu3+, Eu2+, Sr2+) Nanophosphors,” Materials 6, 30793093.
Taniguschi, H., Moriwake, H., Kuwabara, A., Okamura, T., Yamamoto, T., Okazaki, R., Itoh, M., and Terasaki, I. (2014). “Photo-induced change of dielectric response in BaCoSiO4 stuffed tridymite,” J. Appl. Phys. 115, 164103.
Tauc, J., Grigorovici, R., and Vancu, A. (1966). “Optical properties and electronic structure of amorphous germanium,” Physica Status Solidi (b) 15(2), 627637.
Yao, S.-S., Xue, L.-H., and Yan, Y.-W. (2011). “Synthesis and luminescent properties of hexagonal BaZnSiO4:Eu2+ phosphor,” Appl. Phys. B 102, 705709.
Zhang, M., Wang, J., Zhang, Q., Ding, W., and Su, Q. (2007). “Optical properties of Ba2SiO4:Eu2+ phosphor for green light-emitting diode (LED),” Mater. Res. Bull. 42, 3339.


Type Description Title
Supplementary materials

Anike et al. supplementary material
Anike et al. supplementary material 1

 Unknown (1.8 MB)
1.8 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed