Skip to main content Accessibility help

Structural and optical properties of Ba3(Nb6−xTax)Si4O26 (x = 0.6, 1.8, 3.0, 4.2, 5.4)

  • W. Wong-Ng (a1), G. Y. Liu (a2), W. F. Liu (a3), Y. Q. Yang (a1) (a4), S. Y. Wang (a5), Y. C. Lan (a6), D. A. Windover (a1) and J. A. Kaduk (a7) (a8)...


Structure and optical properties have been successfully determined for a series of niobium- and tantalum-containing layered alkaline-earth silicate compounds, Ba3(Nb6−xTax)Si4O26 (x = 0.6, 1.8, 3.0, 4.2, 5.4). The structure of this solid solution was found to be hexagonal P-62m (No. 189), with Z = 1. With x increases from 0.6 to 5.4, the lattice parameter a increases from 8.98804(8) to 9.00565(9) Å and c decreases from 7.83721(10) to 7.75212(12) Å. As a result, the volume decreases from 548.304(11) to 544.479(14) Å3. The (Nb/Ta)O6 distorted octahedra form continuous chains along the c-axis. These (Nb/Ta)O6 chains are in turn linked with the Si2O7 groups to form distorted pentagonal channels in which Ba ions were found. These Ba2+ ions have full occupancy and a 13-fold coordination environment with neighboring oxygen sites. Another salient feature of the structure is the linear Si–O–Si chains. When x in Ba3(Nb6−xTax)Si4O26 increases, the bond valence sum (BVS) values of the Ba sites increase slightly (2.09–2.20), indicating the size of the cage becoming progressively smaller (over-bonding). While SiO cages are also slightly smaller than ideal (BVS range from 4.16 to 4.19), the (Nb/Ta)O6 octahedral cages are slightly larger than ideal (BVS range from 4.87 to 4.90), giving rise to an under-bonding situation. The bandgaps of the solid solution members were measured between 3.39 and 3.59 eV, and the x = 3.0 member was modeled by density functional theory techniques to be 3.07 eV. The bandgaps of these materials indicate that they are potential candidates for ultraviolet photocatalyst.


Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail:


Hide All
Anike, J., Derbushi, R., Wong-Ng, W., Liu, W., King, N., Wang, S., Kaduk, J. A., and Lan, Y. (2019). “Crystallographic and band gap measurements of Ba(Co1−xZnx)SiO4 (x = 0.2, 0.4, 0.6, 0.8),” Powder Diffr. 34, 242250.10.1017/S0885715619000447
Blaha, P., Schwarz, K., Sorantin, P., and Trickey, S. B. (1990). “Full-potential, linearized augmented plane-wave programs for crystalline systems,” Comput. Phys. Commun. 59, 399415.10.1016/0010-4655(90)90187-6
Blasse, G. (1980). “The luminescence of closed-shell transition-metal complexes: new development,” Struct. Bond. 42, 141.10.1007/3-540-10395-3_1
Blasse, G., Dirksen, G. J., Hazenkamp, M. F., Verbaere, A., and Oyetloa, S. (1989). “A luminescent and a non-luminescent modification of cesium phosphatoniobate,” Eur. J. Solid State Inorg. Chem. 26, 497503.
Blasse, G., Dirksen, G. J., Crosnier, M. P., and Pitfard, Y. (1991). “Luminescence of siliconiobates,” Eur. J. Solid State Inorg. Chem. 28, 425429.
Blasse, G., Dirksen, G. J., Crosnier, M. P., and Pitfard, Y. (1992). “The luminescence of K2(NbO)2Si4O12,” J. Alloy. Compd. 189, 259261.10.1016/0925-8388(92)90717-N
Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B. 47, 192197.10.1107/S0108768190011041
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal-structure database,” Acta Crystallogr. B. 41, 244247.10.1107/S0108768185002063
Choisnet, J., Nguyen, N., Groult, D., and Raveau, B. (1976). “De nouveaux oxydes a reseau forme d'octaedres NbO6 (TaO6) et de groupes Si2O7: les phases A3Ta6Si4O26 (A = Ba, Sr) et K6M6Si4O26 (M = Nb, Ta),” Mat. Res. Bull. 11, 887894.10.1016/0025-5408(76)90160-4
Crosnier, M. P., Guyomard, D., Verbaere, A., Pitffard, Y., and Tournoux, M. (1992). “The potassium niobyl cyclotetrasilicate K2(NbO)2Si4O12,” J. Solid State Chem. 98, 128132.10.1016/0022-4596(92)90077-9
Cruickshank, D. W. J. (1961). “The role of 3d-orbitals in π -bonds between (a) silicon, phosphorous, sulphur or chlorine and (b) oxygen or nitrogen,” J. Chem. Soc., 54865504.10.1039/JR9610005486
Cruickshank, D. W. J., Lynton, H., and Barclay, G. A. (1962). “A reinvestigation of the crystal structure of thortveitite Sc2Si2O7,” Acta Cryst. 15, 491498.10.1107/S0365110X62001206
Elk (2019). Elk is an all-electron full-potential linearised augmented-plane wave (LAPW) code with many advanced features. Written originally at Karl-Franzens-Universität Graz as a milestone of the EXCITING EU Research and Training Network. The code is freely available under the GNU General Public License (vs. 5.2.14; June 21, 2019).
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A Correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Cryst. 27, 892900.10.1107/S0021889894004218
Hazenkamp, M. F. and Blasse, G. (1993). “Can luminescence spectroscopy contribute to the elucidation of surface species,” Res. Chem. Intermediat. 19, 343354.10.1163/156856793X00154
Hazenkamp, M. F., van Duijneveldt, F. B., and Blasse, G. (1993). “Theoretical-study on the intensities of charge-transfer type transitions in VO4(3−) and VOF3,” Chem. Phys. 169, 5563.10.1016/0301-0104(93)80040-G
International Centre for Diffraction Data (2019). PDF-4+2019 (Database), edited by Dr. Soorya Kabekkodu, International Centre for Diffraction Data, Newtown Square, PA, USA.
Larson, A. C. and von Dreele, R. B. (2004). “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Report LAUR 86-748, Los Alamos, USA.
Launay, S., Mahé, P., and Quarton, M. (1974). “Synthesis and crystal data for K3Nb3O6Si2O7,” Powder Diffr. 9(2), 9697.10.1017/S0885715600014032
Lou, Z., Huang, B., Wang, Z., Ma, X., Zhang, R., Zhang, X., Qin, X., Dai, Y., and Whangbo, M.-H. (2014). “Ag6Si2O7: a silicate photocatalyst for the visible region,” Chem. Mater. 26, 38733875.10.1021/cm500657n
McMurdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B., Wong-Ng, W., Ettlinger, L., and Hubbard, C. R. (1986). “JCPDS—International centre for diffraction data task group on cell parameter refinement,” Powder Diffr. 1(2), 6676.
Neatu, S., Puche, M., Fornes, V., and Garcia, H. (2014). “Cobalt-containing layered or zeolitic silicates as photocatalysts for hydrogen generation,” Chem. Commun. 50, 1464314646.10.1039/C4CC05931J
Paranthaman, M. P., Wong-Ng, W., and Bhattacharya, R. N. (2015). Springer Series in Materials Science 218, Semiconductor Materials for Solar Photovoltaic Cells (Springer, New York).
Perdew, J. P. (1986). “Density functional theory and the band gap problem,” Int. J. Quantum Chem. Quantum Chem. Symp. 19, 497523.
Perdew, J., Burke, K., and Ernzerhof, M. (1996). “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 38653868.10.1103/PhysRevLett.77.3865
Qasrawi, A. F. (2005). “Refractive index, band gap and oscillator parameters of amorphous GaSe thin films,” Cryst. Res. Technol. 40(6), 610614.10.1002/crat.200410391
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst. 2, 6571.10.1107/S0021889869006558
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A. 32, 751767.10.1107/S0567739476001551
Shannon, J. and Katz, L. (1970). “The structure of barium silicon niobium oxide, Ba3Si4Nb6O26: a compound with linear silicon–oxygen–silicon groups,” Acta Cryst. B. 26, 105109.10.1107/S0567740870002029
Solovyev, I. V., Dederichs, P. H., and Anisimov, V. I. (1994). “Corrected atomic limit in the local-density approximation and the electronic-structure of d-impurities in Rb,” Phys. Rev. B. 50, 1686116871.10.1103/PhysRevB.50.16861
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Cryst. 32, 281289.10.1107/S0021889898006001
Tauc, J., Grigorovici, R., and Vancu, A. (1966). “Optical properties and electronic structure of amorphous germanium,” Phys. Status Solidi B. 15, 627637.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Cryst. 20, 7983.10.1107/S0021889887087090
Yuan, X. and Cormack, A. N. (2003). “Si–O–Si bond angle and torsion angle distribution in vitreous silica and sodium silicate glasses,” J. Non-Crystalline Solids. 319(1–2), 3143.10.1016/S0022-3093(02)01960-9
Zoltai, T. and Buerger, M. J. (1959). “The crystal structure of coesite, the dense, high-pressure form of silica,” Z. Kristallogr. 111, 129141.10.1524/zkri.1959.111.1-6.129


Type Description Title
Supplementary materials

Wong-Ng et al. supplementary material
Wong-Ng et al. supplementary material

 Unknown (2.6 MB)
2.6 MB

Structural and optical properties of Ba3(Nb6−xTax)Si4O26 (x = 0.6, 1.8, 3.0, 4.2, 5.4)

  • W. Wong-Ng (a1), G. Y. Liu (a2), W. F. Liu (a3), Y. Q. Yang (a1) (a4), S. Y. Wang (a5), Y. C. Lan (a6), D. A. Windover (a1) and J. A. Kaduk (a7) (a8)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed