Skip to main content Accessibility help

Powder X-ray structural studies and reference diffraction patterns for three forms of porous aluminum terephthalate, MIL-53(A1)

  • W. Wong-Ng (a1), H. G. Nguyen (a2), L. Espinal (a1), D. W. Siderius (a2) and J. A. Kaduk (a3)...


Powder X-ray diffraction patterns for three forms of MIL-53(Al), a metal organic framework (MOF) compound with breathing characteristics, were investigated using the Rietveld refinement method. These three samples are referred to as the MIL-53(Al)as-syn (the as synthesized sample), orthorhombic, Pnma, a = 17.064(2) Å, b = 6.6069(9) Å, c = 12.1636(13) Å, V = 1371.3(2) Å3, Z = 4), MIL-53(Al)LT-H (low-temperature hydrated phase, monoclinic P21/c, a = 19.4993(8) Å, b = 15.2347(6) Å, c = 6.5687(3) Å, β = 104.219(4) °, V = 1891.55(10) Å3, Z = 8), and MIL-53(Al)HT-D (high-temperature dehydrated phase, Imma, a = 6.6324(5) Å, b = 16.736(2) Å, c = 12.840(2), V = 1425.2(2) Å3, Z = 4). The crystal structures of the “as-syn” sample and the HT-D sample are confirmed to be the commonly adopted ones. However, the structure of the MIL-53(Al)LT-H phase is confirmed to be monoclinic with a space group of P21/c instead of the commonly accepted space group Cc, resulting in a cell volume double in size. The structure has two slightly different types of channel. The pore volumes and pore surface area were estimated to be 0.11766 (8) cm3/g and 1461.3(10) m2/g for MIL-53(Al)HT-D (high-temperature dehydrated phase), and 0.08628 (5) cm3/g and 1401.6 (10) m2/g for MIL-53(Al)as-syn phases, respectively. The powder patterns for the MIL-53(Al)as-syn and MIL-53(Al)HT-D phases are reported in this paper.


Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail:


Hide All
Ahnfeldt, T., Gunzelmann, D., Loiseau, D., Hirsemann, T., Senker, J., Férey, G., and Stock, N. (2009). “Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology,” Inorg. Chem. 48(7), 3057.
Alhamami, M., Doan, H., and Cheng, C.-H. (2014). “A review of breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption,” Materials. (Basel) 7, 31983250.
Bloch, E. D., Hudson, M. R., Mason, J. A., Queen, W. L., Zadrozny, J. M., Chavan, S., Bordiga, S., Brown, C. M., and Long, J. R. (2014). “Reversible CO binding enables tunable CO/H2 and CO/N2 separations in metal-organic frameworks with exposed divalent metal cations,” J. Am. Chem. Soc. 136(30), 1075210761.
Bondi, A. (1964). “van der Waals volumes and radii,” J. Phys. Chem. 68(3), 441451.
Bourrelly, S., Llewellyn, P. L., Serre, C., Millange, F., Loiseau, T., and Férey, G. (2005). “Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47,” J. Am. Chem. Soc. 127, 1351913521.
Bourrelly, S., Serre, C., Vimont, A., Ramsahye, N. A., Maurin, G., Daturi, M., Filinehuk, Y., Férey, G., and Llewellyn, P. L. (2007). “A multidisciplary approach to understanding sorption induced breathing in the metal organic framework MIL53(Cr),” in Zeolites to Porous Materials-The 40th Anniversary of International Zeolite Conference, edited by Xu, R., Gao, Z., Chen, J. and Yan, W. (Elsevier Science, Amsterdam), pp. 10081014.
Britt, D., Furukawa, H., Wang, B., Glover, T. G., and Yaghi, O. M. (2009). “Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites,” Proc. Natl. Acad. Sci. 106(49), 2063720640.
Carrington, E. J., Vitórica-Yrezábal, I. J., and Brammer, L. (2014). “Crystallographic studies of gas sorption in metal-organic frameworks,” Acta Cryst. B70, 404422.
Caskey, S. R., Wong-Foy, A. G., and Matzger, A. J. (2008). “Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores,” J. Am. Chem. Soc. 130, 1087010871.
Chen, R., Yao, J., Gu, Q., Smeets, S., Barlocher, C., Gu, H., Zhu, D., Morris, W., Yaghi, O. M., and Wang, H. (2013). “A Two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption,” Chem. Commun. 49, 95009502.
Choi, S., Drese, J., and Jones, C. W. (2009). “Absorbent materials for carbon dioxide capture from large anthropogenic point source,” ChemSusChem. 2(9), 796854.
Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G., and Williams, I. D. (1999). “A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n,” Science 283, 1148.
Cockayne, E. (2017). “Thermodynamics of the flexible metal-organic framework materials MIL-53(Cr) from first principles,” J. Phys. Chem. 121, 43124317.
Dey, C., Kundu, T., Biswal, B. P., Mallick, A., and Banerjee, R. (2014). “Crystalline metal-organic frameworks (MOFs): synthesis, structure and function,” Acta Cryst. B70, 310.
Duren, T., Millange, F., Ferey, G., Walton, K. S., and Snurr, R. Q. (2007). “Calculating geometric surface areas as a characterization tool for metal–organic frameworks,” J. Phys. Chem. C 111, 15350.2018.
Espinal, L., Wong-Ng, W., Kaduk, J. A., Allen, A. J., Snyder, C. R., Chiu, C., Siderius, D. W., Li, L., Cockayne, E., Espinal, A. E., and Suib, S. L. (2012). “Time dependent CO2 sorption hysteresis in a one-dimensional microporous octahedral molecular sieve,” J. Amer. Chem. Soc. 134(18), 79447951.
Feng, D., Gu, Z.-Y., Chen, Y.-P., Park, J., Wei, Z., Sun, Y., Bosch, M., Yuan, S., and Zhou, H.-C. (2014a). “A highly stable porphyrinic zirconium metal-organic framework with shp-a topology,” J. Am. Chem. Soc. 136, 1771417717.
Feng, D., Wang, K., Su, J., Liu, T.-F., Park, J., Wei, Z., Bosch, M., Yakovenko, A., Zou, X., and Zhou, H.-C. (2014b). “A highly stable zeotype mesoporous zirconium metal-organic framework with ultralarge pores,” Angew. Chem. Int. Ed., 54(1), 149154.
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Cryst. 27, 892900.
Frost, H., Duren, T., and Snurr, R. Q. (2006). “Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal–organic frameworks,” J. Phys. Chem. B 110, 9565.
Furukawa, H., Cordova, K. E., O'Keeffe, M., and Yaghi, O. M. (2013). “The chemistry and applications of metal-organic frameworks,” Science 341, 1230444–11230444-12.
Gao, W.-Y., Chrzanowski, M., and Ma, S. (2014). “Metal-metalloporphyrin frameworks: resurging class of functional materials,” Chem. Soc. Rev. 43, 58415866.
Gelb, L. D., and Gubbins, K. E. (1999). “Pore size distributions in porous glasses: a computer simulation study,” Langmuir 15(2), 305308.
Kauffman, K. L., Culp, J. T., Allen, A. J., Espinal-Thielen, L., Wong-Ng, W., Brown, T. D., Goodman, A., Bernardo, M. P., Pancoast, R. J., Chirdon, D., and Matranga, C. (2011). “Selective adsorption of CO2 from light gas mixtures using a structurally dynamic porous coordination polymer,” Angew Chem. Int. Ed. 50, 1088810892.
Larson, A. C., and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos, USA: Los Alamos National Laboratory.
Leynaud, O., Barnes, P., and Férey, G. (2007). “An explanation for the very large breathing effect of a metal-organic framework during CO2 adsorption,” Adv. Mater. 19, 22462251.
Liu, E., Her, J.-H., Dailly, A., Ramirez-Cuesta, A. J., Neumann, D. A., and Brown, C. M. (2008). “Reversible structural transition in MIL-53 with large temperature hysteresis,” J. Am. Chem. Soc. 130, 1181311818.
Liu, Y., Wang, Z. U., and Zhou, H.-C. (2012). “Recent advances in carbon dioxide capture with metal-organic frameworks,” Greenhouse Gas Sci Technol. 2, 239259.
Llewellyn, P. L., Maurin, G., Devic, T., Lorea-Serna, S., Rosenbach, N., Serre, C., Bourrelly, S.; Horeajada, P., Filinchuk, Y., and Ferey, G. (2008). “Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation,” J. Am. Chem. Soc. 130, 1280812814.
Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., and Ferey, G. (2004). “A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration,” J. Chem-Eur. 10, 13731382.
Meng, L., Cheng, Q., Kim, C., Gao, W.-Y., Wojtas, L., Cheng, Y.-S., Zaworotko, M. J., Zhang, X. P., and Ma, S. (2012). “Crystal engineering of a microporous, catalytically active fcu topology MOF using a custom-designed metalloporphyrin linker,” Angew Chem. Int. Ed. 51, 1008210085.
Morris, R. E., and Wheatley, P. S. (2008). “Gas storage in nanoporous materials,” Angew. Chem. Int. Ed. 47, 49664981.
Mounfield, W. P. III, and Walton, K. S. (2015). “Effect of synthesis solvent on the breathing behavior of MIL-53 (Al),” J. Colloid and Interface Sci. 447, 3339.
Ortiz, G, Chaplais, G., Paillaud, J.-L., Nouali, H., Pataron, J., Raya, J., and Marichal, C. (2014). “New insights into the hydrogen bond network in Al-MIL53 and Ga-MIL-53,” J. Phy. Chem. 118, 22-21-22029.
Palmer, J. C., Moore, J. D., Brennan, J. K., and Gubbins, K. E. (2011). “Simulating local adsorption isotherms in structurally complex porous materials: a direct assessment of the slit pore model,” J. Phys. Chem. Lett., 2(3), 165169.
PDF4+ (Database, 2019), edited by Dr. Soorya Kabekkodu, International Centre for Diffraction Data, Newtown Square, PA, 19073-3273, USA.
Potoff, J. J., and Siepmann, J. I. (2001). “Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide and nitrogen,” AIChE J. 47, 16761682.
Queen, W. L., Hudson, M. R., Bloch, E. D. J. A., Gonzalez, M. L., Lee, J. S., Gygi, D., Howe, J. D., Lee, K., Darwish, T. A., James, M., Peterson, V. K., Teat, S. J., Smit, B., Neaton, J. B., Long, J. R., and Brown, C. M. (2014). “Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc) (M=Mg, Mn, Fe, Co, Ni, Cu, Zn),” Chem. Sci. 5, 45694581.
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.
Rowland, R. S., and Taylor, R. (1996). “Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii,” J. Phys. Chem., 100(18), 73847391.
Rowsell, J. L. C., and Yaghi, O. M. (2004). “Metal-organic frameworks: a New class of porous materials,” Microporous Mesoporous Mater. 73, 314.
Seoane, B., Sorribas, S., Mayoral, A., Tellez, C, and Coronas, J. (2015). “Real-time monitoring of breathing of MIL-53(Al) by environmental SEM,” Microporous Mesoporous Mater. 203, 1723.
Serre, C., Millange, F., Thouvenot, C., Nogues, M., Marsolier, G., Louër, D., and Férey, G. (2002). “Very large breathing effect in the first nanoporous chromium (III)-based solids: MIL-53 or CrIII(OH)·{O2C-C6H4-CO2}·{HO2C- C6H4- CO2H}x·H2Oy,” J. Am. Chem. Soc. 124, 1351913526.
Serre, C., Bourrelly, S., Vimont, A., Ramsahye, N., Maurin, G., Llewellyn, M. D., Filinchuk, Y., and Skoulidas, A. I. (2004). “Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC,” J. Am Chem. Soc. 126, 13561357.
Stephens, P. W. (1999). “Microstrain broadening,” J. Appl. Crystallogr. 32, 281289.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from A12O3,” J. Appl. Cryst. 20, 7983.
Tranchemontagne, D. J., Hunt, J. R., and Yaghi, O. M. (2008). “Room temperature synthesis of metal-organic framework: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0,” Tetrahedron 64, 85538557.
Vimont, A., Travert, A., Bazin, P., Lavalley, J.-C., Daturi, M., Serre, C., Férey, G., Bourrelly, S., and Llewellyn, P. L. (2007). “Evidence of CO2 molecule acting as an electron acceptor on a nanoporous metal-organic-framework MIL-53 or Cr3+(OH)(O2C-C6H4-CO2),” Chem. Commun. 2007, 32913293.
Walton, K. S., and Snurr, R. Q. (2007). “Applicability of the BET method for determining surface areas of microporous metal–organic frameworks,” J. Am. Chem. Soc. 129, 8552.
Wang, Q. M., Shen, D., Bülow, M., Lau, M. L., Deng, S., Fitch, F. R., Lemcoff, N. O., and Semanscin, J. (2002). “Metallo-organic molecular sieve for gas separation and purification,” Microporous Mesoporous Mater. 55, 217230.
Wong-Ng, W., McMurdie, H. F., Hubbard, C. R., and Mighell, A. D. (2001). “JCPDS-ICDD research associateship (cooperative program with NBS/NIST),” J. Res Natl Inst Stand Technol. 106(6), 10131028.
Wong-Ng, W., Kaduk, J. A., Espinal, L., Suchomel, M., Allen, A. J., and Wu, H. (2011). “High- resolution synchrotron X-ray diffraction study of Bis(2-methylimidazolyl)-Zinc, C8H10N4Zn (ZIF-8),” Powd Diffr. 26, 234.
Wong-Ng, W., Kaduk, J. A., Wu, H., and Suchomel, M. (2012). “Synchrotron X-ray studies of metal-organic framework M2(2,5-dihydroxyterephthalte), M=(Mn,Co,Ni,Zn) (MOF74),” Powd. Diffr. 27(4), 256262.
Wong-Ng, W., Culp, J. T., Chen, Y. S., Zavalij, P., Espinal, L., Siderius, D. W., Allen, A. J., Scheins, S., and Matranga, C. (2013). “Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4],” CrystEngComm 15, 46844693.
Wong-Ng, W., Kaduk, J. A., Siderius, D. L., Allen, A. L., Espinal, L., Boyerinas, B. M., Levin, I., Suchomel, M. R., Ilavsky, J., Li, L., Williamson, I.; Cockayne, E., and Wu, H. (2015). “Reference diffraction patterns, microstructure, and pore size distribution for the copper (II) benzene-1,3,5-tricarboxylate metal organic framework (Cu-BTC) compounds,” Powd. Diffr. 30(1), 213.
Wong-Ng, W., Williamson, I., Lawson, M., Siderius, D. W., Culp, J. T., Chen, Y-S., and Li, L. (2018). “Electronic structure, pore size distribution, and sorption characterization of an unusual MOF, {[Ni(dpbz)][Ni(CN)4]}n, dpbz=1,4-bis(4-pyridyl)benzene,” J. Appl. Phys. 123, 245104.
Wu, H., Simmons, J. M., Srinivas, G., Zhou, W., and Yildirim, T. (2010). “Adsorption sites and binding nature of CO2 in prototypical metal-organic frameworks-A combined neutron diffraction and first-principles study,” J. Phys. Chem. Lett. 1, 19461951.
Yaghi, O. M., and Li, Q. (2009). “Reticular chemistry and metal-organic frameworks for clean energy,” MRS Bull. 34, 682690.
Zhou, H. C., and Kitagawa, S. (2014). “Metal–organic frameworks (MOFs),” Chem. Soc. Rev. 43, 54155418.


Type Description Title
Supplementary materials

Wong-Ng et al. supplementary material
Wong-Ng et al. supplementary material 1

 Unknown (2 KB)
2 KB
Supplementary materials

Wong-Ng et al. supplementary material
Wong-Ng et al. supplementary material 2

 Unknown (262 KB)
262 KB
Supplementary materials

Wong-Ng et al. supplementary material
Wong-Ng et al. supplementary material 3

 Unknown (626 KB)
626 KB
Supplementary materials

Wong-Ng et al. supplementary material
Wong-Ng et al. supplementary material 4

 Word (4.3 MB)
4.3 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed