Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T04:40:15.871Z Has data issue: false hasContentIssue false

Powder micro-XRD of small particles

Published online by Cambridge University Press:  29 February 2012

Joseph R. Swider*
Affiliation:
McCrone Associates, Inc., Westmont, Illinois 60559
*
a)Electronic mail: jswider@mccrone.com

Abstract

The increasing use of microanalysis techniques to analyze particles has demanded more rapid phase identification methods for samples in the 10 μm size range. The XRD analysis of such particles is routinely accomplished using a Rigaku combination instrument combined with particle handling methods. Several case studies show the variety of material analysis problems that can be solved with this technique including identification of multiple mineral phases, corrosion components, and paint samples.

Type
Laboratory Note
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Castelnau, O., Ungar, T., Drakopoulos, M., Snigirev, A., Snigireva, I., Schorer, C., Chauveau, T., and Bacroix, B. (2000). “Single grain analysis of strain hardening and internal stresses in cold rolled IF-Ti steel with a new high-resolution microdiffraction technique,” Key Eng. Mater. KEMAEY 177–180, 147152 .10.4028/www.scientific.net/KEM.177-180.147CrossRefGoogle Scholar
Fujiwara, A., Ishii, K., Watanuki, T., Suematsu, H., Nakao, H., Ohwada, K., Fujii, Y., Murakami, Y., Mori, T., Kawada, H., Kikegawa, T., Shimomura, O., Matsubara, T., Hanabusa, H., Daicho, S., Kitamura, S., and Katayama, C. (2000). “Synchrotron radiation X-ray powder diffractometer with a cylindrical imaging plate,” J. Appl. Crystallogr. JACGAR 33, 12411245 .10.1107/S0021889800009286CrossRefGoogle Scholar
Nel, P., Lau, D., and Hay, D. (2006). “Non-destructive micro-X-ray diffraction analysis of painted artefacts: Determination of detection limits for the chromium oxide-zinc oxide matrix,” Nucl. Instrum. Methods Phys. Res. B NIMBEU 251, 489495 .10.1016/j.nimb.2006.07.003CrossRefGoogle Scholar
Salbu, B., Janssens, K., Lind, O. C., Simionovici, A., Krekling, T., Drakopoulos, M., Snigireva, I., and Snigirev, A. (2002). “SR-based X-ray microbeam techniques utilized for solid-state speciation of U in fuel particles,” Proceedings of Actinide XAS Workshop (unpublished), p. 119.Google Scholar
Salbu, B., Krekling, T., Lind, O. C., Oughton, D. H., Drakopoulos, M., Simionovici, A., Snigireva, I., Snigirev, A., Weitkamp, T., Adams, F., Janssens, K., and Kashparov, V. A. (2001). “High energy X-ray microscopy for characterisation of fuel particles,” Nucl. Instrum. Methods Phys. Res. A NIMAER 467–468, 12491252 .10.1016/S0168-9002(01)00641-6CrossRefGoogle Scholar
Swider, J. R. (2009). “Micro powder X-ray diffraction in the laboratory,” Modern Microscopy, 〈http://www.modernmicroscopy.com/main.asp?article=94〉.Google Scholar